Entanglement masquerading in the CMB

The simplest single-field inflation models capture all the relevant contributions to the patterns in the Cosmic Microwave Background (CMB) observed today. A key assumption in these models is that the quantum inflationary fluctuations that source such patterns are generated by a particular quantum st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2023-06, Vol.2023 (6), p.24
Hauptverfasser: Adil, Arsalan, Albrecht, Andreas, Baunach, Rose, Holman, R., Ribeiro, Raquel H., Richard, Benoit J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 24
container_title Journal of cosmology and astroparticle physics
container_volume 2023
creator Adil, Arsalan
Albrecht, Andreas
Baunach, Rose
Holman, R.
Ribeiro, Raquel H.
Richard, Benoit J.
description The simplest single-field inflation models capture all the relevant contributions to the patterns in the Cosmic Microwave Background (CMB) observed today. A key assumption in these models is that the quantum inflationary fluctuations that source such patterns are generated by a particular quantum state — the Bunch-Davies (BD) state. While this is a well-motivated choice from a theoretical perspective, the question arises of whether current data can rule out other, also well motivated, choices of states. In particular, as we previously demonstrated in [1], entanglement is naturally and inevitably dynamically generated during inflation given the presence of a “rolling” spectator scalar field — and the resulting entangled state will yield a primordial power spectrum with potentially measurable deviations compared to the canonical BD result. For this work we developed a perturbative framework to allow a systematic exploration of constraints on (or detection of) entangled states with Planck CMB data using Monte Carlo techniques. We have found that most entangled states accessible with our framework are consistent with the data. One would have to expand the framework to allow a greater variety of entangled states in order to saturate the Planck constraints and more systematically explore any preferences the data may have among the different possibilities.
doi_str_mv 10.1088/1475-7516/2023/06/024
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2826405983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826405983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2e870549e156c96c86181c4ffde2d8b6ccc1167c8f985c95a334a1759938b8e53</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_ghDUa8x-Z_aooX5AxYuel3S6aVPaTd3dHvz3JkTUk6cZhud9GR5CLhm9ZRSgYLJUeamYLjjloqC6oFwekcnP_fjPfkrOYtxQyrUQMCE3M59qv9q6nfMp29Xx4-BCvWz9Kmt9ltYuq17uz8lJU2-ju_ieU_L-MHurnvL56-NzdTfPUSiacu6gpEoax5RGoxE0A4ayaZaOL2GhEZExXSI0BhQaVQsha1YqYwQswCkxJVdjbxdTayO2yeEaO-8dJsslM4ZDD12P0D50_bMx2U13CL7_y3LgWlJlQPSUGikMXYzBNXYf2l0dPi2jdrBmByN2MGIHa5Zq21vrc2zMtd3-t_j_zBeJN2rQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826405983</pqid></control><display><type>article</type><title>Entanglement masquerading in the CMB</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Adil, Arsalan ; Albrecht, Andreas ; Baunach, Rose ; Holman, R. ; Ribeiro, Raquel H. ; Richard, Benoit J.</creator><creatorcontrib>Adil, Arsalan ; Albrecht, Andreas ; Baunach, Rose ; Holman, R. ; Ribeiro, Raquel H. ; Richard, Benoit J. ; Univ. of California, Davis, CA (United States)</creatorcontrib><description>The simplest single-field inflation models capture all the relevant contributions to the patterns in the Cosmic Microwave Background (CMB) observed today. A key assumption in these models is that the quantum inflationary fluctuations that source such patterns are generated by a particular quantum state — the Bunch-Davies (BD) state. While this is a well-motivated choice from a theoretical perspective, the question arises of whether current data can rule out other, also well motivated, choices of states. In particular, as we previously demonstrated in [1], entanglement is naturally and inevitably dynamically generated during inflation given the presence of a “rolling” spectator scalar field — and the resulting entangled state will yield a primordial power spectrum with potentially measurable deviations compared to the canonical BD result. For this work we developed a perturbative framework to allow a systematic exploration of constraints on (or detection of) entangled states with Planck CMB data using Monte Carlo techniques. We have found that most entangled states accessible with our framework are consistent with the data. One would have to expand the framework to allow a greater variety of entangled states in order to saturate the Planck constraints and more systematically explore any preferences the data may have among the different possibilities.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2023/06/024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Cosmic microwave background ; cosmological parameters from CMBR ; Entangled states ; inflation ; Inflation and CMBR theory ; Physics ; quantum cosmology ; Scalars</subject><ispartof>Journal of cosmology and astroparticle physics, 2023-06, Vol.2023 (6), p.24</ispartof><rights>2023 IOP Publishing Ltd and Sissa Medialab</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2e870549e156c96c86181c4ffde2d8b6ccc1167c8f985c95a334a1759938b8e53</citedby><cites>FETCH-LOGICAL-c350t-2e870549e156c96c86181c4ffde2d8b6ccc1167c8f985c95a334a1759938b8e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1475-7516/2023/06/024/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2419928$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adil, Arsalan</creatorcontrib><creatorcontrib>Albrecht, Andreas</creatorcontrib><creatorcontrib>Baunach, Rose</creatorcontrib><creatorcontrib>Holman, R.</creatorcontrib><creatorcontrib>Ribeiro, Raquel H.</creatorcontrib><creatorcontrib>Richard, Benoit J.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><title>Entanglement masquerading in the CMB</title><title>Journal of cosmology and astroparticle physics</title><addtitle>J. Cosmol. Astropart. Phys</addtitle><description>The simplest single-field inflation models capture all the relevant contributions to the patterns in the Cosmic Microwave Background (CMB) observed today. A key assumption in these models is that the quantum inflationary fluctuations that source such patterns are generated by a particular quantum state — the Bunch-Davies (BD) state. While this is a well-motivated choice from a theoretical perspective, the question arises of whether current data can rule out other, also well motivated, choices of states. In particular, as we previously demonstrated in [1], entanglement is naturally and inevitably dynamically generated during inflation given the presence of a “rolling” spectator scalar field — and the resulting entangled state will yield a primordial power spectrum with potentially measurable deviations compared to the canonical BD result. For this work we developed a perturbative framework to allow a systematic exploration of constraints on (or detection of) entangled states with Planck CMB data using Monte Carlo techniques. We have found that most entangled states accessible with our framework are consistent with the data. One would have to expand the framework to allow a greater variety of entangled states in order to saturate the Planck constraints and more systematically explore any preferences the data may have among the different possibilities.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Cosmic microwave background</subject><subject>cosmological parameters from CMBR</subject><subject>Entangled states</subject><subject>inflation</subject><subject>Inflation and CMBR theory</subject><subject>Physics</subject><subject>quantum cosmology</subject><subject>Scalars</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_ghDUa8x-Z_aooX5AxYuel3S6aVPaTd3dHvz3JkTUk6cZhud9GR5CLhm9ZRSgYLJUeamYLjjloqC6oFwekcnP_fjPfkrOYtxQyrUQMCE3M59qv9q6nfMp29Xx4-BCvWz9Kmt9ltYuq17uz8lJU2-ju_ieU_L-MHurnvL56-NzdTfPUSiacu6gpEoax5RGoxE0A4ayaZaOL2GhEZExXSI0BhQaVQsha1YqYwQswCkxJVdjbxdTayO2yeEaO-8dJsslM4ZDD12P0D50_bMx2U13CL7_y3LgWlJlQPSUGikMXYzBNXYf2l0dPi2jdrBmByN2MGIHa5Zq21vrc2zMtd3-t_j_zBeJN2rQ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Adil, Arsalan</creator><creator>Albrecht, Andreas</creator><creator>Baunach, Rose</creator><creator>Holman, R.</creator><creator>Ribeiro, Raquel H.</creator><creator>Richard, Benoit J.</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20230601</creationdate><title>Entanglement masquerading in the CMB</title><author>Adil, Arsalan ; Albrecht, Andreas ; Baunach, Rose ; Holman, R. ; Ribeiro, Raquel H. ; Richard, Benoit J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2e870549e156c96c86181c4ffde2d8b6ccc1167c8f985c95a334a1759938b8e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Cosmic microwave background</topic><topic>cosmological parameters from CMBR</topic><topic>Entangled states</topic><topic>inflation</topic><topic>Inflation and CMBR theory</topic><topic>Physics</topic><topic>quantum cosmology</topic><topic>Scalars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adil, Arsalan</creatorcontrib><creatorcontrib>Albrecht, Andreas</creatorcontrib><creatorcontrib>Baunach, Rose</creatorcontrib><creatorcontrib>Holman, R.</creatorcontrib><creatorcontrib>Ribeiro, Raquel H.</creatorcontrib><creatorcontrib>Richard, Benoit J.</creatorcontrib><creatorcontrib>Univ. of California, Davis, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adil, Arsalan</au><au>Albrecht, Andreas</au><au>Baunach, Rose</au><au>Holman, R.</au><au>Ribeiro, Raquel H.</au><au>Richard, Benoit J.</au><aucorp>Univ. of California, Davis, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement masquerading in the CMB</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><addtitle>J. Cosmol. Astropart. Phys</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>2023</volume><issue>6</issue><spage>24</spage><pages>24-</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>The simplest single-field inflation models capture all the relevant contributions to the patterns in the Cosmic Microwave Background (CMB) observed today. A key assumption in these models is that the quantum inflationary fluctuations that source such patterns are generated by a particular quantum state — the Bunch-Davies (BD) state. While this is a well-motivated choice from a theoretical perspective, the question arises of whether current data can rule out other, also well motivated, choices of states. In particular, as we previously demonstrated in [1], entanglement is naturally and inevitably dynamically generated during inflation given the presence of a “rolling” spectator scalar field — and the resulting entangled state will yield a primordial power spectrum with potentially measurable deviations compared to the canonical BD result. For this work we developed a perturbative framework to allow a systematic exploration of constraints on (or detection of) entangled states with Planck CMB data using Monte Carlo techniques. We have found that most entangled states accessible with our framework are consistent with the data. One would have to expand the framework to allow a greater variety of entangled states in order to saturate the Planck constraints and more systematically explore any preferences the data may have among the different possibilities.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2023/06/024</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-7516
ispartof Journal of cosmology and astroparticle physics, 2023-06, Vol.2023 (6), p.24
issn 1475-7516
1475-7516
language eng
recordid cdi_proquest_journals_2826405983
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects ASTRONOMY AND ASTROPHYSICS
Cosmic microwave background
cosmological parameters from CMBR
Entangled states
inflation
Inflation and CMBR theory
Physics
quantum cosmology
Scalars
title Entanglement masquerading in the CMB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20masquerading%20in%20the%20CMB&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Adil,%20Arsalan&rft.aucorp=Univ.%20of%20California,%20Davis,%20CA%20(United%20States)&rft.date=2023-06-01&rft.volume=2023&rft.issue=6&rft.spage=24&rft.pages=24-&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2023/06/024&rft_dat=%3Cproquest_iop_j%3E2826405983%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826405983&rft_id=info:pmid/&rfr_iscdi=true