A Quality Control Procedure for Climatological Studies Using Argo Data in the North Pacific Western Boundary Current Region

A quality control (QC) procedure is developed to estimate monthly mean climatologies from the large Argo dataset (2005–12) over the North Pacific western boundary current region. In addition to the individual QC procedure, which checks for instrumental, transmission, and gross errors, the paper desc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2016-12, Vol.33 (12), p.2717-2733
Hauptverfasser: Jia, Wenjing, Wang, Dong, Pinardi, Nadia, Simoncelli, Simona, Storto, Andrea, Masina, Simona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2733
container_issue 12
container_start_page 2717
container_title Journal of atmospheric and oceanic technology
container_volume 33
creator Jia, Wenjing
Wang, Dong
Pinardi, Nadia
Simoncelli, Simona
Storto, Andrea
Masina, Simona
description A quality control (QC) procedure is developed to estimate monthly mean climatologies from the large Argo dataset (2005–12) over the North Pacific western boundary current region. In addition to the individual QC procedure, which checks for instrumental, transmission, and gross errors, the paper describes and shows the impact of climatological checks (collective QC) on the quality of both processed profiles and resultant climatological distributions. Objective analysis (OA) is applied progressively to produce the gridded climatological fields. The method uses horizontal regional climatological averages defined in five regime-oriented subregions in the Kuroshio area and the Japan Sea. Performing the QC procedure on specific coherent subregions produces improved profiling data and climatological fields because more details about the local hydrodynamics are taken into consideration. Nonrepresentative data and random noises are more effectively rejected by this method, which has value both in defining a climatological mean and identifying outlier data. Assessing with both profiling and coordinated datasets, the agreement is reasonably good (particularly for those areas with abundant observations), but the results (although already smoothed) can capture more detailed or mesoscale features for further regional studies. The method described has the potential to meet future challenges in processing accumulating Argo observations in the coming decades.
doi_str_mv 10.1175/JTECH-D-15-0140.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2826250377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826250377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-843dea11ec03638fc183a877e551c2b83ce32b571958fc01adca5a38634188dc3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqXwANwscQ544zh2jyUtf6qgQCuOlus4ratgF9s5VLw8gXJaaXc0s_MhdAnkGoCzm6fFtHrIJhmwjEDRL4_QAFhOMlLk5TEaEE5HGWE8P0VnMW4JIUChHKDvMX7tVGvTHlfepeBbPA9em7oLBjc-4Kq1nyr51q-tVi1-T11tTcTLaN0aj8Pa44lKCluH08bgZx_SBs-Vto3V-MPEZILDt75ztQp9RBeCcQm_mbX17hydNKqN5uJ_DtHybrroa8xe7h-r8SzTtCxSJgpaGwVgNKElFY0GQZXg3DAGOl8Jqg3NV4zDiPVHAqrWiikqSlqAELWmQ3R18N0F_9X1P8mt74LrI2Uu8jJnhHLeq-Cg0sHHGEwjd6GvHvYSiPxlLP8Yy4kEJn8ZS6A_76JwEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826250377</pqid></control><display><type>article</type><title>A Quality Control Procedure for Climatological Studies Using Argo Data in the North Pacific Western Boundary Current Region</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jia, Wenjing ; Wang, Dong ; Pinardi, Nadia ; Simoncelli, Simona ; Storto, Andrea ; Masina, Simona</creator><creatorcontrib>Jia, Wenjing ; Wang, Dong ; Pinardi, Nadia ; Simoncelli, Simona ; Storto, Andrea ; Masina, Simona</creatorcontrib><description>A quality control (QC) procedure is developed to estimate monthly mean climatologies from the large Argo dataset (2005–12) over the North Pacific western boundary current region. In addition to the individual QC procedure, which checks for instrumental, transmission, and gross errors, the paper describes and shows the impact of climatological checks (collective QC) on the quality of both processed profiles and resultant climatological distributions. Objective analysis (OA) is applied progressively to produce the gridded climatological fields. The method uses horizontal regional climatological averages defined in five regime-oriented subregions in the Kuroshio area and the Japan Sea. Performing the QC procedure on specific coherent subregions produces improved profiling data and climatological fields because more details about the local hydrodynamics are taken into consideration. Nonrepresentative data and random noises are more effectively rejected by this method, which has value both in defining a climatological mean and identifying outlier data. Assessing with both profiling and coordinated datasets, the agreement is reasonably good (particularly for those areas with abundant observations), but the results (although already smoothed) can capture more detailed or mesoscale features for further regional studies. The method described has the potential to meet future challenges in processing accumulating Argo observations in the coming decades.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-15-0140.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Bathymetry ; Boundary currents ; Climatic analysis ; Climatological means ; Climatology ; Data analysis ; Data processing ; Data transmission ; Datasets ; Fields ; Hydrodynamics ; Mesoscale features ; Methods ; Objective analysis ; Oceans ; Outliers (statistics) ; Procedures ; Profiling ; Quality control ; Regions ; Salinity</subject><ispartof>Journal of atmospheric and oceanic technology, 2016-12, Vol.33 (12), p.2717-2733</ispartof><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-843dea11ec03638fc183a877e551c2b83ce32b571958fc01adca5a38634188dc3</citedby><cites>FETCH-LOGICAL-c364t-843dea11ec03638fc183a877e551c2b83ce32b571958fc01adca5a38634188dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Jia, Wenjing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Pinardi, Nadia</creatorcontrib><creatorcontrib>Simoncelli, Simona</creatorcontrib><creatorcontrib>Storto, Andrea</creatorcontrib><creatorcontrib>Masina, Simona</creatorcontrib><title>A Quality Control Procedure for Climatological Studies Using Argo Data in the North Pacific Western Boundary Current Region</title><title>Journal of atmospheric and oceanic technology</title><description>A quality control (QC) procedure is developed to estimate monthly mean climatologies from the large Argo dataset (2005–12) over the North Pacific western boundary current region. In addition to the individual QC procedure, which checks for instrumental, transmission, and gross errors, the paper describes and shows the impact of climatological checks (collective QC) on the quality of both processed profiles and resultant climatological distributions. Objective analysis (OA) is applied progressively to produce the gridded climatological fields. The method uses horizontal regional climatological averages defined in five regime-oriented subregions in the Kuroshio area and the Japan Sea. Performing the QC procedure on specific coherent subregions produces improved profiling data and climatological fields because more details about the local hydrodynamics are taken into consideration. Nonrepresentative data and random noises are more effectively rejected by this method, which has value both in defining a climatological mean and identifying outlier data. Assessing with both profiling and coordinated datasets, the agreement is reasonably good (particularly for those areas with abundant observations), but the results (although already smoothed) can capture more detailed or mesoscale features for further regional studies. The method described has the potential to meet future challenges in processing accumulating Argo observations in the coming decades.</description><subject>Bathymetry</subject><subject>Boundary currents</subject><subject>Climatic analysis</subject><subject>Climatological means</subject><subject>Climatology</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Datasets</subject><subject>Fields</subject><subject>Hydrodynamics</subject><subject>Mesoscale features</subject><subject>Methods</subject><subject>Objective analysis</subject><subject>Oceans</subject><subject>Outliers (statistics)</subject><subject>Procedures</subject><subject>Profiling</subject><subject>Quality control</subject><subject>Regions</subject><subject>Salinity</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM1OwzAQhC0EEqXwANwscQ544zh2jyUtf6qgQCuOlus4ratgF9s5VLw8gXJaaXc0s_MhdAnkGoCzm6fFtHrIJhmwjEDRL4_QAFhOMlLk5TEaEE5HGWE8P0VnMW4JIUChHKDvMX7tVGvTHlfepeBbPA9em7oLBjc-4Kq1nyr51q-tVi1-T11tTcTLaN0aj8Pa44lKCluH08bgZx_SBs-Vto3V-MPEZILDt75ztQp9RBeCcQm_mbX17hydNKqN5uJ_DtHybrroa8xe7h-r8SzTtCxSJgpaGwVgNKElFY0GQZXg3DAGOl8Jqg3NV4zDiPVHAqrWiikqSlqAELWmQ3R18N0F_9X1P8mt74LrI2Uu8jJnhHLeq-Cg0sHHGEwjd6GvHvYSiPxlLP8Yy4kEJn8ZS6A_76JwEg</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Jia, Wenjing</creator><creator>Wang, Dong</creator><creator>Pinardi, Nadia</creator><creator>Simoncelli, Simona</creator><creator>Storto, Andrea</creator><creator>Masina, Simona</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20161201</creationdate><title>A Quality Control Procedure for Climatological Studies Using Argo Data in the North Pacific Western Boundary Current Region</title><author>Jia, Wenjing ; Wang, Dong ; Pinardi, Nadia ; Simoncelli, Simona ; Storto, Andrea ; Masina, Simona</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-843dea11ec03638fc183a877e551c2b83ce32b571958fc01adca5a38634188dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bathymetry</topic><topic>Boundary currents</topic><topic>Climatic analysis</topic><topic>Climatological means</topic><topic>Climatology</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Datasets</topic><topic>Fields</topic><topic>Hydrodynamics</topic><topic>Mesoscale features</topic><topic>Methods</topic><topic>Objective analysis</topic><topic>Oceans</topic><topic>Outliers (statistics)</topic><topic>Procedures</topic><topic>Profiling</topic><topic>Quality control</topic><topic>Regions</topic><topic>Salinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Wenjing</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Pinardi, Nadia</creatorcontrib><creatorcontrib>Simoncelli, Simona</creatorcontrib><creatorcontrib>Storto, Andrea</creatorcontrib><creatorcontrib>Masina, Simona</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Wenjing</au><au>Wang, Dong</au><au>Pinardi, Nadia</au><au>Simoncelli, Simona</au><au>Storto, Andrea</au><au>Masina, Simona</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Quality Control Procedure for Climatological Studies Using Argo Data in the North Pacific Western Boundary Current Region</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>33</volume><issue>12</issue><spage>2717</spage><epage>2733</epage><pages>2717-2733</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>A quality control (QC) procedure is developed to estimate monthly mean climatologies from the large Argo dataset (2005–12) over the North Pacific western boundary current region. In addition to the individual QC procedure, which checks for instrumental, transmission, and gross errors, the paper describes and shows the impact of climatological checks (collective QC) on the quality of both processed profiles and resultant climatological distributions. Objective analysis (OA) is applied progressively to produce the gridded climatological fields. The method uses horizontal regional climatological averages defined in five regime-oriented subregions in the Kuroshio area and the Japan Sea. Performing the QC procedure on specific coherent subregions produces improved profiling data and climatological fields because more details about the local hydrodynamics are taken into consideration. Nonrepresentative data and random noises are more effectively rejected by this method, which has value both in defining a climatological mean and identifying outlier data. Assessing with both profiling and coordinated datasets, the agreement is reasonably good (particularly for those areas with abundant observations), but the results (although already smoothed) can capture more detailed or mesoscale features for further regional studies. The method described has the potential to meet future challenges in processing accumulating Argo observations in the coming decades.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-15-0140.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2016-12, Vol.33 (12), p.2717-2733
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_journals_2826250377
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Bathymetry
Boundary currents
Climatic analysis
Climatological means
Climatology
Data analysis
Data processing
Data transmission
Datasets
Fields
Hydrodynamics
Mesoscale features
Methods
Objective analysis
Oceans
Outliers (statistics)
Procedures
Profiling
Quality control
Regions
Salinity
title A Quality Control Procedure for Climatological Studies Using Argo Data in the North Pacific Western Boundary Current Region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quality%20Control%20Procedure%20for%20Climatological%20Studies%20Using%20Argo%20Data%20in%20the%20North%20Pacific%20Western%20Boundary%20Current%20Region&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Jia,%20Wenjing&rft.date=2016-12-01&rft.volume=33&rft.issue=12&rft.spage=2717&rft.epage=2733&rft.pages=2717-2733&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-15-0140.1&rft_dat=%3Cproquest_cross%3E2826250377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826250377&rft_id=info:pmid/&rfr_iscdi=true