Structurally Dimensional Engineering in Perovskite Photovoltaics

The low‐dimensional (LD) perovskites are proven to be capable of blocking moisture erosion and thereby improving the photovoltaic device stability. In this review, the low‐dimensional (LD) perovskite materials are carefully summarized that are induced by A‐position organic substituents, starting fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-06, Vol.13 (23), p.n/a
Hauptverfasser: Liu, Yulin, Yuan, Songyang, Zheng, Huiqun, Wu, Min, Zhang, Shiting, Lan, Jing, Li, Wenzhe, Fan, Jiandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced energy materials
container_volume 13
creator Liu, Yulin
Yuan, Songyang
Zheng, Huiqun
Wu, Min
Zhang, Shiting
Lan, Jing
Li, Wenzhe
Fan, Jiandong
description The low‐dimensional (LD) perovskites are proven to be capable of blocking moisture erosion and thereby improving the photovoltaic device stability. In this review, the low‐dimensional (LD) perovskite materials are carefully summarized that are induced by A‐position organic substituents, starting from the crystal microstructure and electronic structure of LD (2D, 1D, and 0D) perovskite materials with regulating dimensions, combined with first principles calculation (DFT). By further studying the thermodynamics and dynamics of crystallization nucleation and growth of LD–3D perovskite thin films in the heterojunction region, LD–3D heterojunction perovskite thin films and solar cells with controllable dimensions can be in situ prepared. Various LD–3D perovskite structure photovoltaic devices are systematically summarized, which shows flexible regulation of the energy band structure and carrier transport characteristics, locks the water oxygen corrosion channel with close‐fitting conjugated structure, and improves the long‐term stability of the LD–3D perovskite solar cells. This review is expected to provide some guidance for the perovskite development and multipurpose use through in depth understanding of the structurally dimensional engineering in perovskite photovoltaics. The low‐dimensional (LD) perovskite materials induced by A‐position organic substituents are summarized in detail, focusing on the crystal microstructure of LD‐perovskite materials with tunable dimension and electronic structure based on first‐principles calculations density functional theory. Various LD–3D perovskite structure photovoltaic devices are also systematically summarized, which is expected to provide some guidance toward addressing the long‐term stability issues of perovskite solar cells and beyond.
doi_str_mv 10.1002/aenm.202300188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2826044809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826044809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-28456fdb016fedef99da90908bb6af6bc487bc3ed68313a828122915b57700083</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EElXpyhyJOeX8UcfeqEr5kApUAmbLSZziktrFTory70lVVEZuuRve5_TqQegSwxgDkGtt3GZMgFAALMQJGmCOWcoFg9PjTck5GsW4hn6YxEDpAN28NqEtmjbouu6SW7sxLlrvdJ3M3co6Y4J1q8S6ZGmC38VP25hk-eEbv_N1o20RL9BZpetoRr97iN7v5m-zh3Txcv84my7SguJMpESwCa_KHDCvTGkqKUstQYLIc64rnhdMZHlBTdnXxFQLIjAhEk_ySZb1dQUdoqvD323wX62JjVr7NvRFoyKCcGBMgOxT40OqCD7GYCq1DXajQ6cwqL0otReljqJ6QB6Ab1ub7p-0ms6fn_7YH_owbCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826044809</pqid></control><display><type>article</type><title>Structurally Dimensional Engineering in Perovskite Photovoltaics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Yulin ; Yuan, Songyang ; Zheng, Huiqun ; Wu, Min ; Zhang, Shiting ; Lan, Jing ; Li, Wenzhe ; Fan, Jiandong</creator><creatorcontrib>Liu, Yulin ; Yuan, Songyang ; Zheng, Huiqun ; Wu, Min ; Zhang, Shiting ; Lan, Jing ; Li, Wenzhe ; Fan, Jiandong</creatorcontrib><description>The low‐dimensional (LD) perovskites are proven to be capable of blocking moisture erosion and thereby improving the photovoltaic device stability. In this review, the low‐dimensional (LD) perovskite materials are carefully summarized that are induced by A‐position organic substituents, starting from the crystal microstructure and electronic structure of LD (2D, 1D, and 0D) perovskite materials with regulating dimensions, combined with first principles calculation (DFT). By further studying the thermodynamics and dynamics of crystallization nucleation and growth of LD–3D perovskite thin films in the heterojunction region, LD–3D heterojunction perovskite thin films and solar cells with controllable dimensions can be in situ prepared. Various LD–3D perovskite structure photovoltaic devices are systematically summarized, which shows flexible regulation of the energy band structure and carrier transport characteristics, locks the water oxygen corrosion channel with close‐fitting conjugated structure, and improves the long‐term stability of the LD–3D perovskite solar cells. This review is expected to provide some guidance for the perovskite development and multipurpose use through in depth understanding of the structurally dimensional engineering in perovskite photovoltaics. The low‐dimensional (LD) perovskite materials induced by A‐position organic substituents are summarized in detail, focusing on the crystal microstructure of LD‐perovskite materials with tunable dimension and electronic structure based on first‐principles calculations density functional theory. Various LD–3D perovskite structure photovoltaic devices are also systematically summarized, which is expected to provide some guidance toward addressing the long‐term stability issues of perovskite solar cells and beyond.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300188</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>A‐site molecules ; Carrier transport ; Controllability ; Crystallization ; dimensional engineering ; Electronic structure ; Energy bands ; First principles ; Heterojunctions ; microstructure ; Moisture effects ; Nucleation ; perovskite solar cells ; Perovskite structure ; Perovskites ; Photovoltaic cells ; Solar cells ; stability ; Thin films ; Transport properties</subject><ispartof>Advanced energy materials, 2023-06, Vol.13 (23), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-28456fdb016fedef99da90908bb6af6bc487bc3ed68313a828122915b57700083</citedby><cites>FETCH-LOGICAL-c3178-28456fdb016fedef99da90908bb6af6bc487bc3ed68313a828122915b57700083</cites><orcidid>0000-0002-8728-6333 ; 0000-0003-3573-6758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Liu, Yulin</creatorcontrib><creatorcontrib>Yuan, Songyang</creatorcontrib><creatorcontrib>Zheng, Huiqun</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Zhang, Shiting</creatorcontrib><creatorcontrib>Lan, Jing</creatorcontrib><creatorcontrib>Li, Wenzhe</creatorcontrib><creatorcontrib>Fan, Jiandong</creatorcontrib><title>Structurally Dimensional Engineering in Perovskite Photovoltaics</title><title>Advanced energy materials</title><description>The low‐dimensional (LD) perovskites are proven to be capable of blocking moisture erosion and thereby improving the photovoltaic device stability. In this review, the low‐dimensional (LD) perovskite materials are carefully summarized that are induced by A‐position organic substituents, starting from the crystal microstructure and electronic structure of LD (2D, 1D, and 0D) perovskite materials with regulating dimensions, combined with first principles calculation (DFT). By further studying the thermodynamics and dynamics of crystallization nucleation and growth of LD–3D perovskite thin films in the heterojunction region, LD–3D heterojunction perovskite thin films and solar cells with controllable dimensions can be in situ prepared. Various LD–3D perovskite structure photovoltaic devices are systematically summarized, which shows flexible regulation of the energy band structure and carrier transport characteristics, locks the water oxygen corrosion channel with close‐fitting conjugated structure, and improves the long‐term stability of the LD–3D perovskite solar cells. This review is expected to provide some guidance for the perovskite development and multipurpose use through in depth understanding of the structurally dimensional engineering in perovskite photovoltaics. The low‐dimensional (LD) perovskite materials induced by A‐position organic substituents are summarized in detail, focusing on the crystal microstructure of LD‐perovskite materials with tunable dimension and electronic structure based on first‐principles calculations density functional theory. Various LD–3D perovskite structure photovoltaic devices are also systematically summarized, which is expected to provide some guidance toward addressing the long‐term stability issues of perovskite solar cells and beyond.</description><subject>A‐site molecules</subject><subject>Carrier transport</subject><subject>Controllability</subject><subject>Crystallization</subject><subject>dimensional engineering</subject><subject>Electronic structure</subject><subject>Energy bands</subject><subject>First principles</subject><subject>Heterojunctions</subject><subject>microstructure</subject><subject>Moisture effects</subject><subject>Nucleation</subject><subject>perovskite solar cells</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>stability</subject><subject>Thin films</subject><subject>Transport properties</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EElXpyhyJOeX8UcfeqEr5kApUAmbLSZziktrFTory70lVVEZuuRve5_TqQegSwxgDkGtt3GZMgFAALMQJGmCOWcoFg9PjTck5GsW4hn6YxEDpAN28NqEtmjbouu6SW7sxLlrvdJ3M3co6Y4J1q8S6ZGmC38VP25hk-eEbv_N1o20RL9BZpetoRr97iN7v5m-zh3Txcv84my7SguJMpESwCa_KHDCvTGkqKUstQYLIc64rnhdMZHlBTdnXxFQLIjAhEk_ySZb1dQUdoqvD323wX62JjVr7NvRFoyKCcGBMgOxT40OqCD7GYCq1DXajQ6cwqL0otReljqJ6QB6Ab1ub7p-0ms6fn_7YH_owbCA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Liu, Yulin</creator><creator>Yuan, Songyang</creator><creator>Zheng, Huiqun</creator><creator>Wu, Min</creator><creator>Zhang, Shiting</creator><creator>Lan, Jing</creator><creator>Li, Wenzhe</creator><creator>Fan, Jiandong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8728-6333</orcidid><orcidid>https://orcid.org/0000-0003-3573-6758</orcidid></search><sort><creationdate>20230601</creationdate><title>Structurally Dimensional Engineering in Perovskite Photovoltaics</title><author>Liu, Yulin ; Yuan, Songyang ; Zheng, Huiqun ; Wu, Min ; Zhang, Shiting ; Lan, Jing ; Li, Wenzhe ; Fan, Jiandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-28456fdb016fedef99da90908bb6af6bc487bc3ed68313a828122915b57700083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A‐site molecules</topic><topic>Carrier transport</topic><topic>Controllability</topic><topic>Crystallization</topic><topic>dimensional engineering</topic><topic>Electronic structure</topic><topic>Energy bands</topic><topic>First principles</topic><topic>Heterojunctions</topic><topic>microstructure</topic><topic>Moisture effects</topic><topic>Nucleation</topic><topic>perovskite solar cells</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>stability</topic><topic>Thin films</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yulin</creatorcontrib><creatorcontrib>Yuan, Songyang</creatorcontrib><creatorcontrib>Zheng, Huiqun</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><creatorcontrib>Zhang, Shiting</creatorcontrib><creatorcontrib>Lan, Jing</creatorcontrib><creatorcontrib>Li, Wenzhe</creatorcontrib><creatorcontrib>Fan, Jiandong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yulin</au><au>Yuan, Songyang</au><au>Zheng, Huiqun</au><au>Wu, Min</au><au>Zhang, Shiting</au><au>Lan, Jing</au><au>Li, Wenzhe</au><au>Fan, Jiandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structurally Dimensional Engineering in Perovskite Photovoltaics</atitle><jtitle>Advanced energy materials</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>13</volume><issue>23</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The low‐dimensional (LD) perovskites are proven to be capable of blocking moisture erosion and thereby improving the photovoltaic device stability. In this review, the low‐dimensional (LD) perovskite materials are carefully summarized that are induced by A‐position organic substituents, starting from the crystal microstructure and electronic structure of LD (2D, 1D, and 0D) perovskite materials with regulating dimensions, combined with first principles calculation (DFT). By further studying the thermodynamics and dynamics of crystallization nucleation and growth of LD–3D perovskite thin films in the heterojunction region, LD–3D heterojunction perovskite thin films and solar cells with controllable dimensions can be in situ prepared. Various LD–3D perovskite structure photovoltaic devices are systematically summarized, which shows flexible regulation of the energy band structure and carrier transport characteristics, locks the water oxygen corrosion channel with close‐fitting conjugated structure, and improves the long‐term stability of the LD–3D perovskite solar cells. This review is expected to provide some guidance for the perovskite development and multipurpose use through in depth understanding of the structurally dimensional engineering in perovskite photovoltaics. The low‐dimensional (LD) perovskite materials induced by A‐position organic substituents are summarized in detail, focusing on the crystal microstructure of LD‐perovskite materials with tunable dimension and electronic structure based on first‐principles calculations density functional theory. Various LD–3D perovskite structure photovoltaic devices are also systematically summarized, which is expected to provide some guidance toward addressing the long‐term stability issues of perovskite solar cells and beyond.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300188</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-8728-6333</orcidid><orcidid>https://orcid.org/0000-0003-3573-6758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-06, Vol.13 (23), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2826044809
source Wiley Online Library Journals Frontfile Complete
subjects A‐site molecules
Carrier transport
Controllability
Crystallization
dimensional engineering
Electronic structure
Energy bands
First principles
Heterojunctions
microstructure
Moisture effects
Nucleation
perovskite solar cells
Perovskite structure
Perovskites
Photovoltaic cells
Solar cells
stability
Thin films
Transport properties
title Structurally Dimensional Engineering in Perovskite Photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structurally%20Dimensional%20Engineering%20in%20Perovskite%20Photovoltaics&rft.jtitle=Advanced%20energy%20materials&rft.au=Liu,%20Yulin&rft.date=2023-06-01&rft.volume=13&rft.issue=23&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300188&rft_dat=%3Cproquest_cross%3E2826044809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826044809&rft_id=info:pmid/&rfr_iscdi=true