Detection of the cyber network attack using robust random forest in a big data environment

Our civilization has entered an era of "knowledge revolution" due to the fast advancement and widespread use of IT and the Internet. Moreover, as network traffic grows and becomes more complicated, the area of cyber network attack detection faces significant new hurdles. The need for a goo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahmad, Sayed Sayeed, Rani, Rashmi, Ali, Edriss A., Wattar, Ihab
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2782
creator Ahmad, Sayed Sayeed
Rani, Rashmi
Ali, Edriss A.
Wattar, Ihab
description Our civilization has entered an era of "knowledge revolution" due to the fast advancement and widespread use of IT and the Internet. Moreover, as network traffic grows and becomes more complicated, the area of cyber network attack detection faces significant new hurdles. The need for a good and efficient system for detecting attacks from a broad spectrum of network traffic serves an essential function. This article aims to provide a unique, robust random forest classifier for identifying the attack in the dataset, which focuses on distinguishing traffic inside assaults from typical big data flows (KDDs)—initializing it by defining and pre-processing the network traffic data. Then the robust random forest may be used to depict it. Cuckoo search optimization may be used to improve and optimize the network. Ultimately, to detect cyber network attacks, an extensive data test was executed. Our paper's simulations demonstrate that the approach suggested has greater detection accuracy and a higher true positive rate while simultaneously having a lower false-positive
doi_str_mv 10.1063/5.0155075
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2825938976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825938976</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-27613cc81d6f5b8a24f96f8f3488d94aaca27eb316be8bceccefedac8ccac3cc3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A12exms0epf6HgRUG8hNlsUtO6yZrNVvrtTWnBm6eZgd_MvPcQuqRkRglnN-WM0LIkVXmEJqmhWcUpP0YTQuoiywv2forOhmFFSF5XlZigjzsdtYrWO-wNjp8aq22jA3Y6_viwxhAjqDUeB-uWOPhmHCIO4FrfYeODTpN1GHBjl7iFCFi7jQ3eddrFc3Ri4GvQF4c6RW8P96_zp2zx8vg8v11kPeUiZnlSyJQStOWmbATkham5EYYVQrR1AaAgr3TDKG-0aJRWShvdghJKgUqLbIqu9nf74L_HJEmu_BhceilzkZc1E3XFE3W9pwZlI-wMyz7YDsJWUiJ32clSHrL7D9748AfKvjXsF0I2cew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2825938976</pqid></control><display><type>conference_proceeding</type><title>Detection of the cyber network attack using robust random forest in a big data environment</title><source>AIP Journals Complete</source><creator>Ahmad, Sayed Sayeed ; Rani, Rashmi ; Ali, Edriss A. ; Wattar, Ihab</creator><contributor>Mamodiya, Udit ; Goyal, Ruchi ; Mutha, Rakhi ; Pratap, Bhanu ; Goyal, Dinesh</contributor><creatorcontrib>Ahmad, Sayed Sayeed ; Rani, Rashmi ; Ali, Edriss A. ; Wattar, Ihab ; Mamodiya, Udit ; Goyal, Ruchi ; Mutha, Rakhi ; Pratap, Bhanu ; Goyal, Dinesh</creatorcontrib><description>Our civilization has entered an era of "knowledge revolution" due to the fast advancement and widespread use of IT and the Internet. Moreover, as network traffic grows and becomes more complicated, the area of cyber network attack detection faces significant new hurdles. The need for a good and efficient system for detecting attacks from a broad spectrum of network traffic serves an essential function. This article aims to provide a unique, robust random forest classifier for identifying the attack in the dataset, which focuses on distinguishing traffic inside assaults from typical big data flows (KDDs)—initializing it by defining and pre-processing the network traffic data. Then the robust random forest may be used to depict it. Cuckoo search optimization may be used to improve and optimize the network. Ultimately, to detect cyber network attacks, an extensive data test was executed. Our paper's simulations demonstrate that the approach suggested has greater detection accuracy and a higher true positive rate while simultaneously having a lower false-positive</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0155075</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Big Data ; Communications traffic ; Optimization ; Robustness ; Traffic information</subject><ispartof>AIP conference proceedings, 2023, Vol.2782 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0155075$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Mamodiya, Udit</contributor><contributor>Goyal, Ruchi</contributor><contributor>Mutha, Rakhi</contributor><contributor>Pratap, Bhanu</contributor><contributor>Goyal, Dinesh</contributor><creatorcontrib>Ahmad, Sayed Sayeed</creatorcontrib><creatorcontrib>Rani, Rashmi</creatorcontrib><creatorcontrib>Ali, Edriss A.</creatorcontrib><creatorcontrib>Wattar, Ihab</creatorcontrib><title>Detection of the cyber network attack using robust random forest in a big data environment</title><title>AIP conference proceedings</title><description>Our civilization has entered an era of "knowledge revolution" due to the fast advancement and widespread use of IT and the Internet. Moreover, as network traffic grows and becomes more complicated, the area of cyber network attack detection faces significant new hurdles. The need for a good and efficient system for detecting attacks from a broad spectrum of network traffic serves an essential function. This article aims to provide a unique, robust random forest classifier for identifying the attack in the dataset, which focuses on distinguishing traffic inside assaults from typical big data flows (KDDs)—initializing it by defining and pre-processing the network traffic data. Then the robust random forest may be used to depict it. Cuckoo search optimization may be used to improve and optimize the network. Ultimately, to detect cyber network attacks, an extensive data test was executed. Our paper's simulations demonstrate that the approach suggested has greater detection accuracy and a higher true positive rate while simultaneously having a lower false-positive</description><subject>Big Data</subject><subject>Communications traffic</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Traffic information</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAm7A12exms0epf6HgRUG8hNlsUtO6yZrNVvrtTWnBm6eZgd_MvPcQuqRkRglnN-WM0LIkVXmEJqmhWcUpP0YTQuoiywv2forOhmFFSF5XlZigjzsdtYrWO-wNjp8aq22jA3Y6_viwxhAjqDUeB-uWOPhmHCIO4FrfYeODTpN1GHBjl7iFCFi7jQ3eddrFc3Ri4GvQF4c6RW8P96_zp2zx8vg8v11kPeUiZnlSyJQStOWmbATkham5EYYVQrR1AaAgr3TDKG-0aJRWShvdghJKgUqLbIqu9nf74L_HJEmu_BhceilzkZc1E3XFE3W9pwZlI-wMyz7YDsJWUiJ32clSHrL7D9748AfKvjXsF0I2cew</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Ahmad, Sayed Sayeed</creator><creator>Rani, Rashmi</creator><creator>Ali, Edriss A.</creator><creator>Wattar, Ihab</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230615</creationdate><title>Detection of the cyber network attack using robust random forest in a big data environment</title><author>Ahmad, Sayed Sayeed ; Rani, Rashmi ; Ali, Edriss A. ; Wattar, Ihab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-27613cc81d6f5b8a24f96f8f3488d94aaca27eb316be8bceccefedac8ccac3cc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Big Data</topic><topic>Communications traffic</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Traffic information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Sayed Sayeed</creatorcontrib><creatorcontrib>Rani, Rashmi</creatorcontrib><creatorcontrib>Ali, Edriss A.</creatorcontrib><creatorcontrib>Wattar, Ihab</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Sayed Sayeed</au><au>Rani, Rashmi</au><au>Ali, Edriss A.</au><au>Wattar, Ihab</au><au>Mamodiya, Udit</au><au>Goyal, Ruchi</au><au>Mutha, Rakhi</au><au>Pratap, Bhanu</au><au>Goyal, Dinesh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of the cyber network attack using robust random forest in a big data environment</atitle><btitle>AIP conference proceedings</btitle><date>2023-06-15</date><risdate>2023</risdate><volume>2782</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Our civilization has entered an era of "knowledge revolution" due to the fast advancement and widespread use of IT and the Internet. Moreover, as network traffic grows and becomes more complicated, the area of cyber network attack detection faces significant new hurdles. The need for a good and efficient system for detecting attacks from a broad spectrum of network traffic serves an essential function. This article aims to provide a unique, robust random forest classifier for identifying the attack in the dataset, which focuses on distinguishing traffic inside assaults from typical big data flows (KDDs)—initializing it by defining and pre-processing the network traffic data. Then the robust random forest may be used to depict it. Cuckoo search optimization may be used to improve and optimize the network. Ultimately, to detect cyber network attacks, an extensive data test was executed. Our paper's simulations demonstrate that the approach suggested has greater detection accuracy and a higher true positive rate while simultaneously having a lower false-positive</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0155075</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2782 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2825938976
source AIP Journals Complete
subjects Big Data
Communications traffic
Optimization
Robustness
Traffic information
title Detection of the cyber network attack using robust random forest in a big data environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A51%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20the%20cyber%20network%20attack%20using%20robust%20random%20forest%20in%20a%20big%20data%20environment&rft.btitle=AIP%20conference%20proceedings&rft.au=Ahmad,%20Sayed%20Sayeed&rft.date=2023-06-15&rft.volume=2782&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0155075&rft_dat=%3Cproquest_scita%3E2825938976%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825938976&rft_id=info:pmid/&rfr_iscdi=true