Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities
Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochast...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2023-06, Vol.133 (23) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 133 |
creator | Fukuda, Hiroshi |
description | Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method. |
doi_str_mv | 10.1063/5.0150936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825938971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825938971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-723e04e852178afb42cee746b9c6a597fc94510f5be152cd77b1536e9841e1323</originalsourceid><addsrcrecordid>eNqd0MtKxDAUBuAgCo6jC98g4EqhmkvTNEsZvMGAC3Ud0swpk6FtapIOCj680Rlw7yIcyPnIT36Ezim5pqTiN-KaUEEUrw7QjJJaFVIIcohmhDBa1EqqY3QS44YQSmuuZujrJXm7NjE5i9c-xTEf7AYMHylAD3jqUjBb5ztI-W70EVZ4MIMvRpMShCFiE7H1IUBnUt71WdqpMwHHqSlsN8WscOtDb5LzAx6Db0zjOpccxFN01Jouwtl-ztHb_d3r4rFYPj88LW6XheWMpUIyDqSEWjAqa9M2JbMAsqwaZSsjlGytKgUlrWiACmZXUjZU8ApUXVKgnPE5uti9m9PfJ4hJb_wUhhypWc2E4rkYmtXlTtngYwzQ6jG43oRPTYn-KVcLvS8326udjdal35_9D299-IN6XLX8G9j9iv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825938971</pqid></control><display><type>article</type><title>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fukuda, Hiroshi</creator><creatorcontrib>Fukuda, Hiroshi</creatorcontrib><description>Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0150936</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anomalies ; Applied physics ; Artificial neural networks ; Clusters ; Correlation ; Extreme ultraviolet radiation ; First principles ; Monte Carlo simulation ; Probability ; Probability theory ; Statistical analysis</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (23)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-723e04e852178afb42cee746b9c6a597fc94510f5be152cd77b1536e9841e1323</cites><orcidid>0000-0002-8859-8937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0150936$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Fukuda, Hiroshi</creatorcontrib><title>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</title><title>Journal of applied physics</title><description>Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method.</description><subject>Anomalies</subject><subject>Applied physics</subject><subject>Artificial neural networks</subject><subject>Clusters</subject><subject>Correlation</subject><subject>Extreme ultraviolet radiation</subject><subject>First principles</subject><subject>Monte Carlo simulation</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Statistical analysis</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKxDAUBuAgCo6jC98g4EqhmkvTNEsZvMGAC3Ud0swpk6FtapIOCj680Rlw7yIcyPnIT36Ezim5pqTiN-KaUEEUrw7QjJJaFVIIcohmhDBa1EqqY3QS44YQSmuuZujrJXm7NjE5i9c-xTEf7AYMHylAD3jqUjBb5ztI-W70EVZ4MIMvRpMShCFiE7H1IUBnUt71WdqpMwHHqSlsN8WscOtDb5LzAx6Db0zjOpccxFN01Jouwtl-ztHb_d3r4rFYPj88LW6XheWMpUIyDqSEWjAqa9M2JbMAsqwaZSsjlGytKgUlrWiACmZXUjZU8ApUXVKgnPE5uti9m9PfJ4hJb_wUhhypWc2E4rkYmtXlTtngYwzQ6jG43oRPTYn-KVcLvS8326udjdal35_9D299-IN6XLX8G9j9iv8</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Fukuda, Hiroshi</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8859-8937</orcidid></search><sort><creationdate>20230621</creationdate><title>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</title><author>Fukuda, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-723e04e852178afb42cee746b9c6a597fc94510f5be152cd77b1536e9841e1323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Applied physics</topic><topic>Artificial neural networks</topic><topic>Clusters</topic><topic>Correlation</topic><topic>Extreme ultraviolet radiation</topic><topic>First principles</topic><topic>Monte Carlo simulation</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukuda, Hiroshi</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukuda, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-21</date><risdate>2023</risdate><volume>133</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0150936</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8859-8937</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2023-06, Vol.133 (23) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2825938971 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Anomalies Applied physics Artificial neural networks Clusters Correlation Extreme ultraviolet radiation First principles Monte Carlo simulation Probability Probability theory Statistical analysis |
title | Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20hotspots%20in%20extreme%20ultraviolet%20exposed%20nano-patterns%20as%20correlated%20molecular%20sub-cluster%20formation%20probabilities&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Fukuda,%20Hiroshi&rft.date=2023-06-21&rft.volume=133&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0150936&rft_dat=%3Cproquest_cross%3E2825938971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825938971&rft_id=info:pmid/&rfr_iscdi=true |