Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities

Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-06, Vol.133 (23)
1. Verfasser: Fukuda, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title Journal of applied physics
container_volume 133
creator Fukuda, Hiroshi
description Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method.
doi_str_mv 10.1063/5.0150936
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825938971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825938971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-723e04e852178afb42cee746b9c6a597fc94510f5be152cd77b1536e9841e1323</originalsourceid><addsrcrecordid>eNqd0MtKxDAUBuAgCo6jC98g4EqhmkvTNEsZvMGAC3Ud0swpk6FtapIOCj680Rlw7yIcyPnIT36Ezim5pqTiN-KaUEEUrw7QjJJaFVIIcohmhDBa1EqqY3QS44YQSmuuZujrJXm7NjE5i9c-xTEf7AYMHylAD3jqUjBb5ztI-W70EVZ4MIMvRpMShCFiE7H1IUBnUt71WdqpMwHHqSlsN8WscOtDb5LzAx6Db0zjOpccxFN01Jouwtl-ztHb_d3r4rFYPj88LW6XheWMpUIyDqSEWjAqa9M2JbMAsqwaZSsjlGytKgUlrWiACmZXUjZU8ApUXVKgnPE5uti9m9PfJ4hJb_wUhhypWc2E4rkYmtXlTtngYwzQ6jG43oRPTYn-KVcLvS8326udjdal35_9D299-IN6XLX8G9j9iv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825938971</pqid></control><display><type>article</type><title>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fukuda, Hiroshi</creator><creatorcontrib>Fukuda, Hiroshi</creatorcontrib><description>Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0150936</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Anomalies ; Applied physics ; Artificial neural networks ; Clusters ; Correlation ; Extreme ultraviolet radiation ; First principles ; Monte Carlo simulation ; Probability ; Probability theory ; Statistical analysis</subject><ispartof>Journal of applied physics, 2023-06, Vol.133 (23)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-723e04e852178afb42cee746b9c6a597fc94510f5be152cd77b1536e9841e1323</cites><orcidid>0000-0002-8859-8937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0150936$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Fukuda, Hiroshi</creatorcontrib><title>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</title><title>Journal of applied physics</title><description>Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method.</description><subject>Anomalies</subject><subject>Applied physics</subject><subject>Artificial neural networks</subject><subject>Clusters</subject><subject>Correlation</subject><subject>Extreme ultraviolet radiation</subject><subject>First principles</subject><subject>Monte Carlo simulation</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Statistical analysis</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0MtKxDAUBuAgCo6jC98g4EqhmkvTNEsZvMGAC3Ud0swpk6FtapIOCj680Rlw7yIcyPnIT36Ezim5pqTiN-KaUEEUrw7QjJJaFVIIcohmhDBa1EqqY3QS44YQSmuuZujrJXm7NjE5i9c-xTEf7AYMHylAD3jqUjBb5ztI-W70EVZ4MIMvRpMShCFiE7H1IUBnUt71WdqpMwHHqSlsN8WscOtDb5LzAx6Db0zjOpccxFN01Jouwtl-ztHb_d3r4rFYPj88LW6XheWMpUIyDqSEWjAqa9M2JbMAsqwaZSsjlGytKgUlrWiACmZXUjZU8ApUXVKgnPE5uti9m9PfJ4hJb_wUhhypWc2E4rkYmtXlTtngYwzQ6jG43oRPTYn-KVcLvS8326udjdal35_9D299-IN6XLX8G9j9iv8</recordid><startdate>20230621</startdate><enddate>20230621</enddate><creator>Fukuda, Hiroshi</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8859-8937</orcidid></search><sort><creationdate>20230621</creationdate><title>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</title><author>Fukuda, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-723e04e852178afb42cee746b9c6a597fc94510f5be152cd77b1536e9841e1323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Applied physics</topic><topic>Artificial neural networks</topic><topic>Clusters</topic><topic>Correlation</topic><topic>Extreme ultraviolet radiation</topic><topic>First principles</topic><topic>Monte Carlo simulation</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukuda, Hiroshi</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukuda, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities</atitle><jtitle>Journal of applied physics</jtitle><date>2023-06-21</date><risdate>2023</risdate><volume>133</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Stochastic pattern anomalies limit the shrinking of the size of nano-patterns in extreme-ultraviolet lithography at around 10 nm due to the discrete/probabilistic nature of photon–electron-reaction systems. We express the patterns and their anomalies as probability distributions and predict stochastic hotspots where the anomaly generation probabilities rise unexpectedly in arbitrary pattern features. Three-dimensional chemo-physical event distributions in pattern-exposed resist films are calculated by the fully coupled first-principles Monte Carlo simulation combined with the discrete development/etching models. The aggregates of molecular level solubility flipping (sub-cluster) well express spatial correlations in the observed anomalies. Spatial correlation in sub-cluster generation is not scaled and their impact increases with shrinking patterns. The correlation is squeezed near the pattern edge, inducing edge placement error, and it spreads in the areas between edges causing stochastic pattern defects. For materials with sub-cluster size not negligible compared to image size, the stochastic hotspots appear when the correlated area spreads in areas far from the edges adjacent to the higher probability region. Deep neural networks successfully predict the probability distributions of sub-clusters and anomaly generation in arbitrary pattern features without the Monte Carlo method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0150936</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8859-8937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-06, Vol.133 (23)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2825938971
source AIP Journals Complete; Alma/SFX Local Collection
subjects Anomalies
Applied physics
Artificial neural networks
Clusters
Correlation
Extreme ultraviolet radiation
First principles
Monte Carlo simulation
Probability
Probability theory
Statistical analysis
title Stochastic hotspots in extreme ultraviolet exposed nano-patterns as correlated molecular sub-cluster formation probabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20hotspots%20in%20extreme%20ultraviolet%20exposed%20nano-patterns%20as%20correlated%20molecular%20sub-cluster%20formation%20probabilities&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Fukuda,%20Hiroshi&rft.date=2023-06-21&rft.volume=133&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0150936&rft_dat=%3Cproquest_cross%3E2825938971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825938971&rft_id=info:pmid/&rfr_iscdi=true