A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking

This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2023-07, Vol.69 (7), p.n/a
Hauptverfasser: Chen, Zhengyu, Lyu, Wenjin, Wang, Ruipu, Li, Yuming, Xu, Chunming, Jiang, Guiyuan, Zhang, Linzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title AIChE journal
container_volume 69
creator Chen, Zhengyu
Lyu, Wenjin
Wang, Ruipu
Li, Yuming
Xu, Chunming
Jiang, Guiyuan
Zhang, Linzhou
description This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands.
doi_str_mv 10.1002/aic.18060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825657677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825657677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGkPTtxnIxVBaVSJRaYGCz_S3FJ42KnQvn2uKQr0-mefu-d7iF0T2BGAOhcOj0jFZRwgSaEFTxjNbBLNAEAkiWBXKObGHdpo7yiE_SxwHvfWn1sZcBfrrO900kxtsWu0z4cfJC967ZYy162Q-yx1M64fsCND_hzMMFrGZTvzsDJroPUKWp7i64a2UZ7d55T9P789LZ8yTavq_Vyscl0nlPIGqZYoU1BirrmDRhulbSclYRWVprcGFuRSjUKqFGVorwkRMlC1pA-KKDM8yl6GHMPwX8fbezFzh9Dl04KWlFWMl5ynqjHkdLBxxhsIw7B7WUYBAFx6k6k7sRfd4mdj-yPa-3wPygW6-Xo-AW-0XER</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825657677</pqid></control><display><type>article</type><title>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Zhengyu ; Lyu, Wenjin ; Wang, Ruipu ; Li, Yuming ; Xu, Chunming ; Jiang, Guiyuan ; Zhang, Linzhou</creator><creatorcontrib>Chen, Zhengyu ; Lyu, Wenjin ; Wang, Ruipu ; Li, Yuming ; Xu, Chunming ; Jiang, Guiyuan ; Zhang, Linzhou</creatorcontrib><description>This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18060</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acidity ; Algorithms ; Aluminum ; catalyst acidity ; catalyst design ; Catalysts ; Catalytic converters ; Catalytic cracking ; Composition ; Free energy ; Gasoline ; Hydrocarbons ; kinetic model ; Lewis acid ; Mathematical models ; Optimization ; Parameter estimation ; Silicon</subject><ispartof>AIChE journal, 2023-07, Vol.69 (7), p.n/a</ispartof><rights>2023 American Institute of Chemical Engineers.</rights><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</citedby><cites>FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</cites><orcidid>0000-0003-1464-3368 ; 0000-0002-8354-784X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Zhengyu</creatorcontrib><creatorcontrib>Lyu, Wenjin</creatorcontrib><creatorcontrib>Wang, Ruipu</creatorcontrib><creatorcontrib>Li, Yuming</creatorcontrib><creatorcontrib>Xu, Chunming</creatorcontrib><creatorcontrib>Jiang, Guiyuan</creatorcontrib><creatorcontrib>Zhang, Linzhou</creatorcontrib><title>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</title><title>AIChE journal</title><description>This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands.</description><subject>Acidity</subject><subject>Algorithms</subject><subject>Aluminum</subject><subject>catalyst acidity</subject><subject>catalyst design</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Catalytic cracking</subject><subject>Composition</subject><subject>Free energy</subject><subject>Gasoline</subject><subject>Hydrocarbons</subject><subject>kinetic model</subject><subject>Lewis acid</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Silicon</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGkPTtxnIxVBaVSJRaYGCz_S3FJ42KnQvn2uKQr0-mefu-d7iF0T2BGAOhcOj0jFZRwgSaEFTxjNbBLNAEAkiWBXKObGHdpo7yiE_SxwHvfWn1sZcBfrrO900kxtsWu0z4cfJC967ZYy162Q-yx1M64fsCND_hzMMFrGZTvzsDJroPUKWp7i64a2UZ7d55T9P789LZ8yTavq_Vyscl0nlPIGqZYoU1BirrmDRhulbSclYRWVprcGFuRSjUKqFGVorwkRMlC1pA-KKDM8yl6GHMPwX8fbezFzh9Dl04KWlFWMl5ynqjHkdLBxxhsIw7B7WUYBAFx6k6k7sRfd4mdj-yPa-3wPygW6-Xo-AW-0XER</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Chen, Zhengyu</creator><creator>Lyu, Wenjin</creator><creator>Wang, Ruipu</creator><creator>Li, Yuming</creator><creator>Xu, Chunming</creator><creator>Jiang, Guiyuan</creator><creator>Zhang, Linzhou</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1464-3368</orcidid><orcidid>https://orcid.org/0000-0002-8354-784X</orcidid></search><sort><creationdate>202307</creationdate><title>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</title><author>Chen, Zhengyu ; Lyu, Wenjin ; Wang, Ruipu ; Li, Yuming ; Xu, Chunming ; Jiang, Guiyuan ; Zhang, Linzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidity</topic><topic>Algorithms</topic><topic>Aluminum</topic><topic>catalyst acidity</topic><topic>catalyst design</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Catalytic cracking</topic><topic>Composition</topic><topic>Free energy</topic><topic>Gasoline</topic><topic>Hydrocarbons</topic><topic>kinetic model</topic><topic>Lewis acid</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhengyu</creatorcontrib><creatorcontrib>Lyu, Wenjin</creatorcontrib><creatorcontrib>Wang, Ruipu</creatorcontrib><creatorcontrib>Li, Yuming</creatorcontrib><creatorcontrib>Xu, Chunming</creatorcontrib><creatorcontrib>Jiang, Guiyuan</creatorcontrib><creatorcontrib>Zhang, Linzhou</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhengyu</au><au>Lyu, Wenjin</au><au>Wang, Ruipu</au><au>Li, Yuming</au><au>Xu, Chunming</au><au>Jiang, Guiyuan</au><au>Zhang, Linzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</atitle><jtitle>AIChE journal</jtitle><date>2023-07</date><risdate>2023</risdate><volume>69</volume><issue>7</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.18060</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1464-3368</orcidid><orcidid>https://orcid.org/0000-0002-8354-784X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2023-07, Vol.69 (7), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2825657677
source Wiley Online Library Journals Frontfile Complete
subjects Acidity
Algorithms
Aluminum
catalyst acidity
catalyst design
Catalysts
Catalytic converters
Catalytic cracking
Composition
Free energy
Gasoline
Hydrocarbons
kinetic model
Lewis acid
Mathematical models
Optimization
Parameter estimation
Silicon
title A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20kinetic%20model%20incorporating%20catalyst%20acidity%20for%20hydrocarbon%20catalytic%20cracking&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Zhengyu&rft.date=2023-07&rft.volume=69&rft.issue=7&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18060&rft_dat=%3Cproquest_cross%3E2825657677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825657677&rft_id=info:pmid/&rfr_iscdi=true