A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking
This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was a...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2023-07, Vol.69 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | AIChE journal |
container_volume | 69 |
creator | Chen, Zhengyu Lyu, Wenjin Wang, Ruipu Li, Yuming Xu, Chunming Jiang, Guiyuan Zhang, Linzhou |
description | This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands. |
doi_str_mv | 10.1002/aic.18060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825657677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825657677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGkPTtxnIxVBaVSJRaYGCz_S3FJ42KnQvn2uKQr0-mefu-d7iF0T2BGAOhcOj0jFZRwgSaEFTxjNbBLNAEAkiWBXKObGHdpo7yiE_SxwHvfWn1sZcBfrrO900kxtsWu0z4cfJC967ZYy162Q-yx1M64fsCND_hzMMFrGZTvzsDJroPUKWp7i64a2UZ7d55T9P789LZ8yTavq_Vyscl0nlPIGqZYoU1BirrmDRhulbSclYRWVprcGFuRSjUKqFGVorwkRMlC1pA-KKDM8yl6GHMPwX8fbezFzh9Dl04KWlFWMl5ynqjHkdLBxxhsIw7B7WUYBAFx6k6k7sRfd4mdj-yPa-3wPygW6-Xo-AW-0XER</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825657677</pqid></control><display><type>article</type><title>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Zhengyu ; Lyu, Wenjin ; Wang, Ruipu ; Li, Yuming ; Xu, Chunming ; Jiang, Guiyuan ; Zhang, Linzhou</creator><creatorcontrib>Chen, Zhengyu ; Lyu, Wenjin ; Wang, Ruipu ; Li, Yuming ; Xu, Chunming ; Jiang, Guiyuan ; Zhang, Linzhou</creatorcontrib><description>This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18060</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acidity ; Algorithms ; Aluminum ; catalyst acidity ; catalyst design ; Catalysts ; Catalytic converters ; Catalytic cracking ; Composition ; Free energy ; Gasoline ; Hydrocarbons ; kinetic model ; Lewis acid ; Mathematical models ; Optimization ; Parameter estimation ; Silicon</subject><ispartof>AIChE journal, 2023-07, Vol.69 (7), p.n/a</ispartof><rights>2023 American Institute of Chemical Engineers.</rights><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</citedby><cites>FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</cites><orcidid>0000-0003-1464-3368 ; 0000-0002-8354-784X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.18060$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.18060$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Zhengyu</creatorcontrib><creatorcontrib>Lyu, Wenjin</creatorcontrib><creatorcontrib>Wang, Ruipu</creatorcontrib><creatorcontrib>Li, Yuming</creatorcontrib><creatorcontrib>Xu, Chunming</creatorcontrib><creatorcontrib>Jiang, Guiyuan</creatorcontrib><creatorcontrib>Zhang, Linzhou</creatorcontrib><title>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</title><title>AIChE journal</title><description>This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands.</description><subject>Acidity</subject><subject>Algorithms</subject><subject>Aluminum</subject><subject>catalyst acidity</subject><subject>catalyst design</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Catalytic cracking</subject><subject>Composition</subject><subject>Free energy</subject><subject>Gasoline</subject><subject>Hydrocarbons</subject><subject>kinetic model</subject><subject>Lewis acid</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Silicon</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGkPTtxnIxVBaVSJRaYGCz_S3FJ42KnQvn2uKQr0-mefu-d7iF0T2BGAOhcOj0jFZRwgSaEFTxjNbBLNAEAkiWBXKObGHdpo7yiE_SxwHvfWn1sZcBfrrO900kxtsWu0z4cfJC967ZYy162Q-yx1M64fsCND_hzMMFrGZTvzsDJroPUKWp7i64a2UZ7d55T9P789LZ8yTavq_Vyscl0nlPIGqZYoU1BirrmDRhulbSclYRWVprcGFuRSjUKqFGVorwkRMlC1pA-KKDM8yl6GHMPwX8fbezFzh9Dl04KWlFWMl5ynqjHkdLBxxhsIw7B7WUYBAFx6k6k7sRfd4mdj-yPa-3wPygW6-Xo-AW-0XER</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Chen, Zhengyu</creator><creator>Lyu, Wenjin</creator><creator>Wang, Ruipu</creator><creator>Li, Yuming</creator><creator>Xu, Chunming</creator><creator>Jiang, Guiyuan</creator><creator>Zhang, Linzhou</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1464-3368</orcidid><orcidid>https://orcid.org/0000-0002-8354-784X</orcidid></search><sort><creationdate>202307</creationdate><title>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</title><author>Chen, Zhengyu ; Lyu, Wenjin ; Wang, Ruipu ; Li, Yuming ; Xu, Chunming ; Jiang, Guiyuan ; Zhang, Linzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-f5b54cd414997f0d7ebae756128ead3dde818bfb02db8b27611ba4a9027840633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidity</topic><topic>Algorithms</topic><topic>Aluminum</topic><topic>catalyst acidity</topic><topic>catalyst design</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Catalytic cracking</topic><topic>Composition</topic><topic>Free energy</topic><topic>Gasoline</topic><topic>Hydrocarbons</topic><topic>kinetic model</topic><topic>Lewis acid</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhengyu</creatorcontrib><creatorcontrib>Lyu, Wenjin</creatorcontrib><creatorcontrib>Wang, Ruipu</creatorcontrib><creatorcontrib>Li, Yuming</creatorcontrib><creatorcontrib>Xu, Chunming</creatorcontrib><creatorcontrib>Jiang, Guiyuan</creatorcontrib><creatorcontrib>Zhang, Linzhou</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhengyu</au><au>Lyu, Wenjin</au><au>Wang, Ruipu</au><au>Li, Yuming</au><au>Xu, Chunming</au><au>Jiang, Guiyuan</au><au>Zhang, Linzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking</atitle><jtitle>AIChE journal</jtitle><date>2023-07</date><risdate>2023</risdate><volume>69</volume><issue>7</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This work built a molecular‐level kinetic model for hydrocarbon catalytic cracking, incorporating the catalyst acidity as the parameter to estimate reaction rates. The n‐decane and 1‐hexene co‐conversion catalytic cracking process was chosen as the studying case. The molecular reaction network was automatically generated using a computer‐aided algorithm. A modified linear free energy relationship was proposed to estimate the activation energy in a complex reaction system. The kinetic parameters were initially regressed from the experimental data under several reaction conditions. On this basis, the product composition was evaluated for three catalytic cracking catalysts with different Si/Al. The Bronsted acid and Lewis acid as the key catalyst properties were correlated with kinetic parameters. The built model can calculate the product distribution, gasoline composition, and molecular distribution at different reaction conditions for different catalysts. This sensitive study shows that it will facilitate the model‐based optimization of catalysts and reaction conditions according to product demands.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.18060</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1464-3368</orcidid><orcidid>https://orcid.org/0000-0002-8354-784X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2023-07, Vol.69 (7), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2825657677 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acidity Algorithms Aluminum catalyst acidity catalyst design Catalysts Catalytic converters Catalytic cracking Composition Free energy Gasoline Hydrocarbons kinetic model Lewis acid Mathematical models Optimization Parameter estimation Silicon |
title | A molecular kinetic model incorporating catalyst acidity for hydrocarbon catalytic cracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A50%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20kinetic%20model%20incorporating%20catalyst%20acidity%20for%20hydrocarbon%20catalytic%20cracking&rft.jtitle=AIChE%20journal&rft.au=Chen,%20Zhengyu&rft.date=2023-07&rft.volume=69&rft.issue=7&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18060&rft_dat=%3Cproquest_cross%3E2825657677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825657677&rft_id=info:pmid/&rfr_iscdi=true |