Unraveling Magnetic Anisotropy Energy in Ferromagnetic Monolayer on Ferroelectric ABO\(_3\) via DFT and Machine Learning
Spin-based devices have attracted attention as an alternative to CMOS-based technology. However, one of the challenges in spintronics devices is reducing the spin-switching energy in ferromagnetic (FM) materials. To address this, we considered ferroelectric (FE) materials, which may affect the magne...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jeong, Dameul Kang, Seoung-Hun Young-Kyun Kwon |
description | Spin-based devices have attracted attention as an alternative to CMOS-based technology. However, one of the challenges in spintronics devices is reducing the spin-switching energy in ferromagnetic (FM) materials. To address this, we considered ferroelectric (FE) materials, which may affect the magnetic properties of FM materials. We explored various oxide perovskites ABO\(_3\) as FE materials, onto which a Fe monolayer was placed as the FM material. We evaluated the magnetic anisotropy energy (MAE) of the Fe monolayer while varying the polarization of ABO\(_3\). Our analysis showed that the MAE depends on the magnetic dipole moment induced in the FE material at the interface between the FE and FM materials due to structural modifications. Machine learning techniques were also employed to identify universal behaviors of the MAE in the presence of FE layers, confirming the importance of magnetic moments near the interface in explaining the dependence of the MAE on FE materials. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825641158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825641158</sourcerecordid><originalsourceid>FETCH-proquest_journals_28256411583</originalsourceid><addsrcrecordid>eNqNjT0LwkAQRA9BUNT_sGCjhZDcJTGtX8FCsYmdEI64xpO4p3tRzL83gvZWU7w3My3RlUr5kziQsiMGzl08z5PRVIah6orXnlg_sTRUwFYXhJXJYUbG2YrtrYYVIRc1GIIEme31p2wt2VLXyGC_CEvMK_6057vDKFOHMTyNhmWSgqZjM56fDSFsUDM1b33RPunS4eCbPTFMVuliPbmxvT_QVdnFPpgalMlYhlHg-2Gs_rPeBHpMkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825641158</pqid></control><display><type>article</type><title>Unraveling Magnetic Anisotropy Energy in Ferromagnetic Monolayer on Ferroelectric ABO\(_3\) via DFT and Machine Learning</title><source>Free E- Journals</source><creator>Jeong, Dameul ; Kang, Seoung-Hun ; Young-Kyun Kwon</creator><creatorcontrib>Jeong, Dameul ; Kang, Seoung-Hun ; Young-Kyun Kwon</creatorcontrib><description>Spin-based devices have attracted attention as an alternative to CMOS-based technology. However, one of the challenges in spintronics devices is reducing the spin-switching energy in ferromagnetic (FM) materials. To address this, we considered ferroelectric (FE) materials, which may affect the magnetic properties of FM materials. We explored various oxide perovskites ABO\(_3\) as FE materials, onto which a Fe monolayer was placed as the FM material. We evaluated the magnetic anisotropy energy (MAE) of the Fe monolayer while varying the polarization of ABO\(_3\). Our analysis showed that the MAE depends on the magnetic dipole moment induced in the FE material at the interface between the FE and FM materials due to structural modifications. Machine learning techniques were also employed to identify universal behaviors of the MAE in the presence of FE layers, confirming the importance of magnetic moments near the interface in explaining the dependence of the MAE on FE materials.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dipole moments ; Ferroelectric materials ; Ferroelectricity ; Ferromagnetic materials ; Iron ; Machine learning ; Magnetic anisotropy ; Magnetic dipoles ; Magnetic moments ; Magnetic properties ; Monolayers ; Perovskites ; Spintronics</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Jeong, Dameul</creatorcontrib><creatorcontrib>Kang, Seoung-Hun</creatorcontrib><creatorcontrib>Young-Kyun Kwon</creatorcontrib><title>Unraveling Magnetic Anisotropy Energy in Ferromagnetic Monolayer on Ferroelectric ABO\(_3\) via DFT and Machine Learning</title><title>arXiv.org</title><description>Spin-based devices have attracted attention as an alternative to CMOS-based technology. However, one of the challenges in spintronics devices is reducing the spin-switching energy in ferromagnetic (FM) materials. To address this, we considered ferroelectric (FE) materials, which may affect the magnetic properties of FM materials. We explored various oxide perovskites ABO\(_3\) as FE materials, onto which a Fe monolayer was placed as the FM material. We evaluated the magnetic anisotropy energy (MAE) of the Fe monolayer while varying the polarization of ABO\(_3\). Our analysis showed that the MAE depends on the magnetic dipole moment induced in the FE material at the interface between the FE and FM materials due to structural modifications. Machine learning techniques were also employed to identify universal behaviors of the MAE in the presence of FE layers, confirming the importance of magnetic moments near the interface in explaining the dependence of the MAE on FE materials.</description><subject>Dipole moments</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferromagnetic materials</subject><subject>Iron</subject><subject>Machine learning</subject><subject>Magnetic anisotropy</subject><subject>Magnetic dipoles</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Monolayers</subject><subject>Perovskites</subject><subject>Spintronics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjT0LwkAQRA9BUNT_sGCjhZDcJTGtX8FCsYmdEI64xpO4p3tRzL83gvZWU7w3My3RlUr5kziQsiMGzl08z5PRVIah6orXnlg_sTRUwFYXhJXJYUbG2YrtrYYVIRc1GIIEme31p2wt2VLXyGC_CEvMK_6057vDKFOHMTyNhmWSgqZjM56fDSFsUDM1b33RPunS4eCbPTFMVuliPbmxvT_QVdnFPpgalMlYhlHg-2Gs_rPeBHpMkg</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Jeong, Dameul</creator><creator>Kang, Seoung-Hun</creator><creator>Young-Kyun Kwon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230613</creationdate><title>Unraveling Magnetic Anisotropy Energy in Ferromagnetic Monolayer on Ferroelectric ABO\(_3\) via DFT and Machine Learning</title><author>Jeong, Dameul ; Kang, Seoung-Hun ; Young-Kyun Kwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28256411583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dipole moments</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferromagnetic materials</topic><topic>Iron</topic><topic>Machine learning</topic><topic>Magnetic anisotropy</topic><topic>Magnetic dipoles</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Monolayers</topic><topic>Perovskites</topic><topic>Spintronics</topic><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Dameul</creatorcontrib><creatorcontrib>Kang, Seoung-Hun</creatorcontrib><creatorcontrib>Young-Kyun Kwon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Dameul</au><au>Kang, Seoung-Hun</au><au>Young-Kyun Kwon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unraveling Magnetic Anisotropy Energy in Ferromagnetic Monolayer on Ferroelectric ABO\(_3\) via DFT and Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2023-06-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Spin-based devices have attracted attention as an alternative to CMOS-based technology. However, one of the challenges in spintronics devices is reducing the spin-switching energy in ferromagnetic (FM) materials. To address this, we considered ferroelectric (FE) materials, which may affect the magnetic properties of FM materials. We explored various oxide perovskites ABO\(_3\) as FE materials, onto which a Fe monolayer was placed as the FM material. We evaluated the magnetic anisotropy energy (MAE) of the Fe monolayer while varying the polarization of ABO\(_3\). Our analysis showed that the MAE depends on the magnetic dipole moment induced in the FE material at the interface between the FE and FM materials due to structural modifications. Machine learning techniques were also employed to identify universal behaviors of the MAE in the presence of FE layers, confirming the importance of magnetic moments near the interface in explaining the dependence of the MAE on FE materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2825641158 |
source | Free E- Journals |
subjects | Dipole moments Ferroelectric materials Ferroelectricity Ferromagnetic materials Iron Machine learning Magnetic anisotropy Magnetic dipoles Magnetic moments Magnetic properties Monolayers Perovskites Spintronics |
title | Unraveling Magnetic Anisotropy Energy in Ferromagnetic Monolayer on Ferroelectric ABO\(_3\) via DFT and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unraveling%20Magnetic%20Anisotropy%20Energy%20in%20Ferromagnetic%20Monolayer%20on%20Ferroelectric%20ABO%5C(_3%5C)%20via%20DFT%20and%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Jeong,%20Dameul&rft.date=2023-06-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2825641158%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825641158&rft_id=info:pmid/&rfr_iscdi=true |