Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations

This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-07, Vol.8 (7), p.1-8
Hauptverfasser: Gayango, Diego, Salmoral, Rafael, Romero, Honorio, Carmona, Jose Manuel, Suarez, Alejandro, Ollero, Anibal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 7
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 8
creator Gayango, Diego
Salmoral, Rafael
Romero, Honorio
Carmona, Jose Manuel
Suarez, Alejandro
Ollero, Anibal
description This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing.
doi_str_mv 10.1109/LRA.2023.3280753
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825602777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10138070</ieee_id><sourcerecordid>2825602777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-fad95b8f431cdde07d3110ba854b819d3e6ca07c801cec96a546b7ecf11801e3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQxy0EElXpzsBgiTnFjyZOxlC1FKlSpaoSY-Q4l8YljYPjAN354LiPocs9_3en-yH0SMmYUpK8LNfpmBHGx5zFRIT8Bg0YFyLgIopur-J7NOq6HSGEhkzwJBygv1doVLWX9hPPvmXdS6dNg02JF4fc6gLP9S8UwbyWbaubLf44mhSsljVem9w4_KNdhdPemVbXPk2tqrQD5XoLuDT21GrM3vQdXvWuML40r_W2cnjVgj2d6x7QXSnrDkYXP0Sb-WwzXQTL1dv7NF0GisXCBaUskjCPywmnqiiAiIL773MZh5M8pknBIVKSCBUTqkAlkQwnUS5AlZT6EvAhej6vba356qFz2c70tvEXMxazMCJMCOFV5KxS1nSdhTJrrfaADhkl2ZF25mlnR9rZhbYfeTqPaAC4klPu-4T_A0HMfYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825602777</pqid></control><display><type>article</type><title>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Gayango, Diego ; Salmoral, Rafael ; Romero, Honorio ; Carmona, Jose Manuel ; Suarez, Alejandro ; Ollero, Anibal</creator><creatorcontrib>Gayango, Diego ; Salmoral, Rafael ; Romero, Honorio ; Carmona, Jose Manuel ; Suarez, Alejandro ; Ollero, Anibal</creatorcontrib><description>This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3280753</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; Aerodynamic forces ; Aerodynamics ; Aircraft configurations ; Automatic pilots ; Autonomous aerial vehicles ; Benchmark testing ; Benchmarks ; Energy efficiency ; Flapping wings ; Flight operations ; Forward flight ; Inspection ; Propellers ; Robots ; Tail ; Unmanned aerial vehicles ; Visual flight ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2023-07, Vol.8 (7), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-fad95b8f431cdde07d3110ba854b819d3e6ca07c801cec96a546b7ecf11801e3</cites><orcidid>0000-0003-2155-2472 ; 0000-0002-4549-6957 ; 0000-0001-6466-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10138070$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids></links><search><creatorcontrib>Gayango, Diego</creatorcontrib><creatorcontrib>Salmoral, Rafael</creatorcontrib><creatorcontrib>Romero, Honorio</creatorcontrib><creatorcontrib>Carmona, Jose Manuel</creatorcontrib><creatorcontrib>Suarez, Alejandro</creatorcontrib><creatorcontrib>Ollero, Anibal</creatorcontrib><title>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing.</description><subject>Actuation</subject><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Aircraft configurations</subject><subject>Automatic pilots</subject><subject>Autonomous aerial vehicles</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Energy efficiency</subject><subject>Flapping wings</subject><subject>Flight operations</subject><subject>Forward flight</subject><subject>Inspection</subject><subject>Propellers</subject><subject>Robots</subject><subject>Tail</subject><subject>Unmanned aerial vehicles</subject><subject>Visual flight</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQxy0EElXpzsBgiTnFjyZOxlC1FKlSpaoSY-Q4l8YljYPjAN354LiPocs9_3en-yH0SMmYUpK8LNfpmBHGx5zFRIT8Bg0YFyLgIopur-J7NOq6HSGEhkzwJBygv1doVLWX9hPPvmXdS6dNg02JF4fc6gLP9S8UwbyWbaubLf44mhSsljVem9w4_KNdhdPemVbXPk2tqrQD5XoLuDT21GrM3vQdXvWuML40r_W2cnjVgj2d6x7QXSnrDkYXP0Sb-WwzXQTL1dv7NF0GisXCBaUskjCPywmnqiiAiIL773MZh5M8pknBIVKSCBUTqkAlkQwnUS5AlZT6EvAhej6vba356qFz2c70tvEXMxazMCJMCOFV5KxS1nSdhTJrrfaADhkl2ZF25mlnR9rZhbYfeTqPaAC4klPu-4T_A0HMfYQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Gayango, Diego</creator><creator>Salmoral, Rafael</creator><creator>Romero, Honorio</creator><creator>Carmona, Jose Manuel</creator><creator>Suarez, Alejandro</creator><creator>Ollero, Anibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2155-2472</orcidid><orcidid>https://orcid.org/0000-0002-4549-6957</orcidid><orcidid>https://orcid.org/0000-0001-6466-8227</orcidid></search><sort><creationdate>20230701</creationdate><title>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</title><author>Gayango, Diego ; Salmoral, Rafael ; Romero, Honorio ; Carmona, Jose Manuel ; Suarez, Alejandro ; Ollero, Anibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-fad95b8f431cdde07d3110ba854b819d3e6ca07c801cec96a546b7ecf11801e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Aircraft configurations</topic><topic>Automatic pilots</topic><topic>Autonomous aerial vehicles</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Energy efficiency</topic><topic>Flapping wings</topic><topic>Flight operations</topic><topic>Forward flight</topic><topic>Inspection</topic><topic>Propellers</topic><topic>Robots</topic><topic>Tail</topic><topic>Unmanned aerial vehicles</topic><topic>Visual flight</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gayango, Diego</creatorcontrib><creatorcontrib>Salmoral, Rafael</creatorcontrib><creatorcontrib>Romero, Honorio</creatorcontrib><creatorcontrib>Carmona, Jose Manuel</creatorcontrib><creatorcontrib>Suarez, Alejandro</creatorcontrib><creatorcontrib>Ollero, Anibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gayango, Diego</au><au>Salmoral, Rafael</au><au>Romero, Honorio</au><au>Carmona, Jose Manuel</au><au>Suarez, Alejandro</au><au>Ollero, Anibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>8</volume><issue>7</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3280753</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2155-2472</orcidid><orcidid>https://orcid.org/0000-0002-4549-6957</orcidid><orcidid>https://orcid.org/0000-0001-6466-8227</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-07, Vol.8 (7), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2825602777
source IEEE Electronic Library (IEL)
subjects Actuation
Aerodynamic forces
Aerodynamics
Aircraft configurations
Automatic pilots
Autonomous aerial vehicles
Benchmark testing
Benchmarks
Energy efficiency
Flapping wings
Flight operations
Forward flight
Inspection
Propellers
Robots
Tail
Unmanned aerial vehicles
Visual flight
Visualization
title Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20Evaluation%20of%20Hybrid%20Fixed-Flapping%20Wing%20Aerial%20Robot%20with%20Autopilot%20Architecture%20for%20Autonomous%20Outdoor%20Flight%20Operations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Gayango,%20Diego&rft.date=2023-07-01&rft.volume=8&rft.issue=7&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3280753&rft_dat=%3Cproquest_cross%3E2825602777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825602777&rft_id=info:pmid/&rft_ieee_id=10138070&rfr_iscdi=true