Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations
This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehic...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-07, Vol.8 (7), p.1-8 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Gayango, Diego Salmoral, Rafael Romero, Honorio Carmona, Jose Manuel Suarez, Alejandro Ollero, Anibal |
description | This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing. |
doi_str_mv | 10.1109/LRA.2023.3280753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825602777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10138070</ieee_id><sourcerecordid>2825602777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-fad95b8f431cdde07d3110ba854b819d3e6ca07c801cec96a546b7ecf11801e3</originalsourceid><addsrcrecordid>eNpNkDtPwzAQxy0EElXpzsBgiTnFjyZOxlC1FKlSpaoSY-Q4l8YljYPjAN354LiPocs9_3en-yH0SMmYUpK8LNfpmBHGx5zFRIT8Bg0YFyLgIopur-J7NOq6HSGEhkzwJBygv1doVLWX9hPPvmXdS6dNg02JF4fc6gLP9S8UwbyWbaubLf44mhSsljVem9w4_KNdhdPemVbXPk2tqrQD5XoLuDT21GrM3vQdXvWuML40r_W2cnjVgj2d6x7QXSnrDkYXP0Sb-WwzXQTL1dv7NF0GisXCBaUskjCPywmnqiiAiIL773MZh5M8pknBIVKSCBUTqkAlkQwnUS5AlZT6EvAhej6vba356qFz2c70tvEXMxazMCJMCOFV5KxS1nSdhTJrrfaADhkl2ZF25mlnR9rZhbYfeTqPaAC4klPu-4T_A0HMfYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825602777</pqid></control><display><type>article</type><title>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</title><source>IEEE Electronic Library (IEL)</source><creator>Gayango, Diego ; Salmoral, Rafael ; Romero, Honorio ; Carmona, Jose Manuel ; Suarez, Alejandro ; Ollero, Anibal</creator><creatorcontrib>Gayango, Diego ; Salmoral, Rafael ; Romero, Honorio ; Carmona, Jose Manuel ; Suarez, Alejandro ; Ollero, Anibal</creatorcontrib><description>This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3280753</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; Aerodynamic forces ; Aerodynamics ; Aircraft configurations ; Automatic pilots ; Autonomous aerial vehicles ; Benchmark testing ; Benchmarks ; Energy efficiency ; Flapping wings ; Flight operations ; Forward flight ; Inspection ; Propellers ; Robots ; Tail ; Unmanned aerial vehicles ; Visual flight ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2023-07, Vol.8 (7), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-fad95b8f431cdde07d3110ba854b819d3e6ca07c801cec96a546b7ecf11801e3</cites><orcidid>0000-0003-2155-2472 ; 0000-0002-4549-6957 ; 0000-0001-6466-8227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10138070$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids></links><search><creatorcontrib>Gayango, Diego</creatorcontrib><creatorcontrib>Salmoral, Rafael</creatorcontrib><creatorcontrib>Romero, Honorio</creatorcontrib><creatorcontrib>Carmona, Jose Manuel</creatorcontrib><creatorcontrib>Suarez, Alejandro</creatorcontrib><creatorcontrib>Ollero, Anibal</creatorcontrib><title>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing.</description><subject>Actuation</subject><subject>Aerodynamic forces</subject><subject>Aerodynamics</subject><subject>Aircraft configurations</subject><subject>Automatic pilots</subject><subject>Autonomous aerial vehicles</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Energy efficiency</subject><subject>Flapping wings</subject><subject>Flight operations</subject><subject>Forward flight</subject><subject>Inspection</subject><subject>Propellers</subject><subject>Robots</subject><subject>Tail</subject><subject>Unmanned aerial vehicles</subject><subject>Visual flight</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQxy0EElXpzsBgiTnFjyZOxlC1FKlSpaoSY-Q4l8YljYPjAN354LiPocs9_3en-yH0SMmYUpK8LNfpmBHGx5zFRIT8Bg0YFyLgIopur-J7NOq6HSGEhkzwJBygv1doVLWX9hPPvmXdS6dNg02JF4fc6gLP9S8UwbyWbaubLf44mhSsljVem9w4_KNdhdPemVbXPk2tqrQD5XoLuDT21GrM3vQdXvWuML40r_W2cnjVgj2d6x7QXSnrDkYXP0Sb-WwzXQTL1dv7NF0GisXCBaUskjCPywmnqiiAiIL773MZh5M8pknBIVKSCBUTqkAlkQwnUS5AlZT6EvAhej6vba356qFz2c70tvEXMxazMCJMCOFV5KxS1nSdhTJrrfaADhkl2ZF25mlnR9rZhbYfeTqPaAC4klPu-4T_A0HMfYQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Gayango, Diego</creator><creator>Salmoral, Rafael</creator><creator>Romero, Honorio</creator><creator>Carmona, Jose Manuel</creator><creator>Suarez, Alejandro</creator><creator>Ollero, Anibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2155-2472</orcidid><orcidid>https://orcid.org/0000-0002-4549-6957</orcidid><orcidid>https://orcid.org/0000-0001-6466-8227</orcidid></search><sort><creationdate>20230701</creationdate><title>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</title><author>Gayango, Diego ; Salmoral, Rafael ; Romero, Honorio ; Carmona, Jose Manuel ; Suarez, Alejandro ; Ollero, Anibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-fad95b8f431cdde07d3110ba854b819d3e6ca07c801cec96a546b7ecf11801e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Aerodynamic forces</topic><topic>Aerodynamics</topic><topic>Aircraft configurations</topic><topic>Automatic pilots</topic><topic>Autonomous aerial vehicles</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Energy efficiency</topic><topic>Flapping wings</topic><topic>Flight operations</topic><topic>Forward flight</topic><topic>Inspection</topic><topic>Propellers</topic><topic>Robots</topic><topic>Tail</topic><topic>Unmanned aerial vehicles</topic><topic>Visual flight</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gayango, Diego</creatorcontrib><creatorcontrib>Salmoral, Rafael</creatorcontrib><creatorcontrib>Romero, Honorio</creatorcontrib><creatorcontrib>Carmona, Jose Manuel</creatorcontrib><creatorcontrib>Suarez, Alejandro</creatorcontrib><creatorcontrib>Ollero, Anibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gayango, Diego</au><au>Salmoral, Rafael</au><au>Romero, Honorio</au><au>Carmona, Jose Manuel</au><au>Suarez, Alejandro</au><au>Ollero, Anibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>8</volume><issue>7</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This letter is focused on the benchmark evaluation and comparison of the flapping and fixed wing flight modes on an hybrid platform developed for the realization of autonomous inspection operations outdoors. The platform combines the high range and endurance of fixed-wing UAVs (unmanned aerial vehicles), with the higher maneuverability and intrinsic safety of flapping wing in the interaction with humans during the hand launch and capture. A unified model of the hybrid platform is derived for both configurations following the Lagrange formulation to express the multi-body dynamics and aerodynamic forces of the flapping wing and the propellers. The proposed control scheme exploits the similarities of both flight modes in the tail actuation and in the generation of thrust either with the flapping wings or the propellers, in such a way that it can be implemented on conventional autopilots, facilitating in this way the adoption of this type of aerial platforms. To evaluate and compare the performance of both modes, a set of benchmark tests and metrics are defined, including the energy efficiency in forward flight, trajectory tracking, hand launch and capture, and accuracy in visual inspection. Experimental results in outdoors validate the developed prototype, identifying the fixed/flapping transitions, and evidencing the higher energy efficiency of the flapping wing mode compared to the fixed wing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3280753</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2155-2472</orcidid><orcidid>https://orcid.org/0000-0002-4549-6957</orcidid><orcidid>https://orcid.org/0000-0001-6466-8227</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-07, Vol.8 (7), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2825602777 |
source | IEEE Electronic Library (IEL) |
subjects | Actuation Aerodynamic forces Aerodynamics Aircraft configurations Automatic pilots Autonomous aerial vehicles Benchmark testing Benchmarks Energy efficiency Flapping wings Flight operations Forward flight Inspection Propellers Robots Tail Unmanned aerial vehicles Visual flight Visualization |
title | Benchmark Evaluation of Hybrid Fixed-Flapping Wing Aerial Robot with Autopilot Architecture for Autonomous Outdoor Flight Operations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T13%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20Evaluation%20of%20Hybrid%20Fixed-Flapping%20Wing%20Aerial%20Robot%20with%20Autopilot%20Architecture%20for%20Autonomous%20Outdoor%20Flight%20Operations&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Gayango,%20Diego&rft.date=2023-07-01&rft.volume=8&rft.issue=7&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3280753&rft_dat=%3Cproquest_cross%3E2825602777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825602777&rft_id=info:pmid/&rft_ieee_id=10138070&rfr_iscdi=true |