Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering Models
An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay Advanced Microwave Scanning Radiometer Precipitation Validation Campaign to assess recent advances in the modeling of microwave scattering properties of nonspherical ice particles in the atmosphere. Previous...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2014-04, Vol.53 (4), p.1080-1098 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1098 |
---|---|
container_issue | 4 |
container_start_page | 1080 |
container_title | Journal of applied meteorology and climatology |
container_volume | 53 |
creator | Kulie, Mark S. Hiley, Michael J. Bennartz, Ralf Kneifel, Stefan Tanelli, Simone |
description | An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay Advanced Microwave Scanning Radiometer Precipitation Validation Campaign to assess recent advances in the modeling of microwave scattering properties of nonspherical ice particles in the atmosphere. Previous work has suggested that a triple-frequency (Ku–Ka–W band) reflectivity framework appears capable of identifying key microphysical properties of snow, potentially providing much-needed constraints on significant sources of uncertainty in current snowfall retrieval algorithms used for microwave remote sensing instruments. However, these results were based solely on a modeling framework. In contrast, this study considers the triple-frequency approach from an observational perspective using airborne radar observations from the Wakasa Bay field campaign. After accounting for several challenges with the observational dataset, such as beam mismatching and attenuation, observed dual-wavelength ratio results are presented that confirm both the utility of a multifrequency approach to snowfall retrieval and the validity of the unique signatures predicted by complex aggregate ice particle scattering models. This analysis provides valuable insight into the microphysics of frozen precipitation that can in turn be applied to more readily available single- and dual-frequency systems, providing guidance for future precipitation retrieval algorithms. |
doi_str_mv | 10.1175/JAMC-D-13-066.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2825539351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26176357</jstor_id><sourcerecordid>26176357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-a65dbbfae2e3f5c4af157a933aecfd6497c9ad2b453af58fd354ad72f1d8f78e3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYiePZls4rnQdjrt7pGA-BGMCeC5KdvWLMFdbBcN_94lGI6eZg7P-87kIeSWswHnGocvo9cxnVAOlCk14GekxxFzmksQ56ddyEtyldKaMSm1xh5Ry1htN55Oo__a-brcZ3PrbMzmPmx82VbfVbvPFtVHbdtd9ClrQraom59rchHsJvmbv9kn79OH5fiJzt4en8ejGS1BsZZahW61CtYLDwFLaQNHbQsA68vglCx0WVgnVhLBBsyDA5TWaRG4y4POPfTJ_bF3G5vuv9SadbOLdXfSiFwgQgHI_6M4CigYSI4dNTxSZWxSij6Ybaw-bdwbzsxBoTkoNBPDwXQKzaH37phYp7aJJ1worhWghl__vm1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1523903415</pqid></control><display><type>article</type><title>Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering Models</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kulie, Mark S. ; Hiley, Michael J. ; Bennartz, Ralf ; Kneifel, Stefan ; Tanelli, Simone</creator><creatorcontrib>Kulie, Mark S. ; Hiley, Michael J. ; Bennartz, Ralf ; Kneifel, Stefan ; Tanelli, Simone</creatorcontrib><description>An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay Advanced Microwave Scanning Radiometer Precipitation Validation Campaign to assess recent advances in the modeling of microwave scattering properties of nonspherical ice particles in the atmosphere. Previous work has suggested that a triple-frequency (Ku–Ka–W band) reflectivity framework appears capable of identifying key microphysical properties of snow, potentially providing much-needed constraints on significant sources of uncertainty in current snowfall retrieval algorithms used for microwave remote sensing instruments. However, these results were based solely on a modeling framework. In contrast, this study considers the triple-frequency approach from an observational perspective using airborne radar observations from the Wakasa Bay field campaign. After accounting for several challenges with the observational dataset, such as beam mismatching and attenuation, observed dual-wavelength ratio results are presented that confirm both the utility of a multifrequency approach to snowfall retrieval and the validity of the unique signatures predicted by complex aggregate ice particle scattering models. This analysis provides valuable insight into the microphysics of frozen precipitation that can in turn be applied to more readily available single- and dual-frequency systems, providing guidance for future precipitation retrieval algorithms.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/JAMC-D-13-066.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Airborne radar ; Airborne remote sensing ; Algorithms ; Atmospheric models ; Clouds ; Datasets ; Future precipitation ; Habits ; Ice ; Ice particles ; Instruments ; Investigations ; Meteorology ; Meteors ; Microphysics ; Microwave radiometers ; Microwave scattering ; Microwaves ; Modelling ; Observational studies ; Particle scattering ; Particle size ; Precipitation ; Radar ; Radar echoes ; Radar reflectivity ; Radar signatures ; Radar tracking ; Radiometers ; Reflectance ; Remote sensing ; Retrieval ; Snow ; Snowfall ; Wave attenuation ; Wavelength</subject><ispartof>Journal of applied meteorology and climatology, 2014-04, Vol.53 (4), p.1080-1098</ispartof><rights>2014 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2014</rights><rights>Copyright American Meteorological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-a65dbbfae2e3f5c4af157a933aecfd6497c9ad2b453af58fd354ad72f1d8f78e3</citedby><cites>FETCH-LOGICAL-c360t-a65dbbfae2e3f5c4af157a933aecfd6497c9ad2b453af58fd354ad72f1d8f78e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26176357$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26176357$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Kulie, Mark S.</creatorcontrib><creatorcontrib>Hiley, Michael J.</creatorcontrib><creatorcontrib>Bennartz, Ralf</creatorcontrib><creatorcontrib>Kneifel, Stefan</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><title>Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering Models</title><title>Journal of applied meteorology and climatology</title><description>An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay Advanced Microwave Scanning Radiometer Precipitation Validation Campaign to assess recent advances in the modeling of microwave scattering properties of nonspherical ice particles in the atmosphere. Previous work has suggested that a triple-frequency (Ku–Ka–W band) reflectivity framework appears capable of identifying key microphysical properties of snow, potentially providing much-needed constraints on significant sources of uncertainty in current snowfall retrieval algorithms used for microwave remote sensing instruments. However, these results were based solely on a modeling framework. In contrast, this study considers the triple-frequency approach from an observational perspective using airborne radar observations from the Wakasa Bay field campaign. After accounting for several challenges with the observational dataset, such as beam mismatching and attenuation, observed dual-wavelength ratio results are presented that confirm both the utility of a multifrequency approach to snowfall retrieval and the validity of the unique signatures predicted by complex aggregate ice particle scattering models. This analysis provides valuable insight into the microphysics of frozen precipitation that can in turn be applied to more readily available single- and dual-frequency systems, providing guidance for future precipitation retrieval algorithms.</description><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Algorithms</subject><subject>Atmospheric models</subject><subject>Clouds</subject><subject>Datasets</subject><subject>Future precipitation</subject><subject>Habits</subject><subject>Ice</subject><subject>Ice particles</subject><subject>Instruments</subject><subject>Investigations</subject><subject>Meteorology</subject><subject>Meteors</subject><subject>Microphysics</subject><subject>Microwave radiometers</subject><subject>Microwave scattering</subject><subject>Microwaves</subject><subject>Modelling</subject><subject>Observational studies</subject><subject>Particle scattering</subject><subject>Particle size</subject><subject>Precipitation</subject><subject>Radar</subject><subject>Radar echoes</subject><subject>Radar reflectivity</subject><subject>Radar signatures</subject><subject>Radar tracking</subject><subject>Radiometers</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Retrieval</subject><subject>Snow</subject><subject>Snowfall</subject><subject>Wave attenuation</subject><subject>Wavelength</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1PAjEQhhujiYiePZls4rnQdjrt7pGA-BGMCeC5KdvWLMFdbBcN_94lGI6eZg7P-87kIeSWswHnGocvo9cxnVAOlCk14GekxxFzmksQ56ddyEtyldKaMSm1xh5Ry1htN55Oo__a-brcZ3PrbMzmPmx82VbfVbvPFtVHbdtd9ClrQraom59rchHsJvmbv9kn79OH5fiJzt4en8ejGS1BsZZahW61CtYLDwFLaQNHbQsA68vglCx0WVgnVhLBBsyDA5TWaRG4y4POPfTJ_bF3G5vuv9SadbOLdXfSiFwgQgHI_6M4CigYSI4dNTxSZWxSij6Ybaw-bdwbzsxBoTkoNBPDwXQKzaH37phYp7aJJ1worhWghl__vm1q</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Kulie, Mark S.</creator><creator>Hiley, Michael J.</creator><creator>Bennartz, Ralf</creator><creator>Kneifel, Stefan</creator><creator>Tanelli, Simone</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20140401</creationdate><title>Triple-Frequency Radar Reflectivity Signatures of Snow</title><author>Kulie, Mark S. ; Hiley, Michael J. ; Bennartz, Ralf ; Kneifel, Stefan ; Tanelli, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-a65dbbfae2e3f5c4af157a933aecfd6497c9ad2b453af58fd354ad72f1d8f78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Algorithms</topic><topic>Atmospheric models</topic><topic>Clouds</topic><topic>Datasets</topic><topic>Future precipitation</topic><topic>Habits</topic><topic>Ice</topic><topic>Ice particles</topic><topic>Instruments</topic><topic>Investigations</topic><topic>Meteorology</topic><topic>Meteors</topic><topic>Microphysics</topic><topic>Microwave radiometers</topic><topic>Microwave scattering</topic><topic>Microwaves</topic><topic>Modelling</topic><topic>Observational studies</topic><topic>Particle scattering</topic><topic>Particle size</topic><topic>Precipitation</topic><topic>Radar</topic><topic>Radar echoes</topic><topic>Radar reflectivity</topic><topic>Radar signatures</topic><topic>Radar tracking</topic><topic>Radiometers</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Retrieval</topic><topic>Snow</topic><topic>Snowfall</topic><topic>Wave attenuation</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulie, Mark S.</creatorcontrib><creatorcontrib>Hiley, Michael J.</creatorcontrib><creatorcontrib>Bennartz, Ralf</creatorcontrib><creatorcontrib>Kneifel, Stefan</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulie, Mark S.</au><au>Hiley, Michael J.</au><au>Bennartz, Ralf</au><au>Kneifel, Stefan</au><au>Tanelli, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering Models</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>53</volume><issue>4</issue><spage>1080</spage><epage>1098</epage><pages>1080-1098</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>An observation-based study is presented that utilizes aircraft data from the 2003 Wakasa Bay Advanced Microwave Scanning Radiometer Precipitation Validation Campaign to assess recent advances in the modeling of microwave scattering properties of nonspherical ice particles in the atmosphere. Previous work has suggested that a triple-frequency (Ku–Ka–W band) reflectivity framework appears capable of identifying key microphysical properties of snow, potentially providing much-needed constraints on significant sources of uncertainty in current snowfall retrieval algorithms used for microwave remote sensing instruments. However, these results were based solely on a modeling framework. In contrast, this study considers the triple-frequency approach from an observational perspective using airborne radar observations from the Wakasa Bay field campaign. After accounting for several challenges with the observational dataset, such as beam mismatching and attenuation, observed dual-wavelength ratio results are presented that confirm both the utility of a multifrequency approach to snowfall retrieval and the validity of the unique signatures predicted by complex aggregate ice particle scattering models. This analysis provides valuable insight into the microphysics of frozen precipitation that can in turn be applied to more readily available single- and dual-frequency systems, providing guidance for future precipitation retrieval algorithms.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAMC-D-13-066.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2014-04, Vol.53 (4), p.1080-1098 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_journals_2825539351 |
source | Jstor Complete Legacy; American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Airborne radar Airborne remote sensing Algorithms Atmospheric models Clouds Datasets Future precipitation Habits Ice Ice particles Instruments Investigations Meteorology Meteors Microphysics Microwave radiometers Microwave scattering Microwaves Modelling Observational studies Particle scattering Particle size Precipitation Radar Radar echoes Radar reflectivity Radar signatures Radar tracking Radiometers Reflectance Remote sensing Retrieval Snow Snowfall Wave attenuation Wavelength |
title | Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple-Frequency%20Radar%20Reflectivity%20Signatures%20of%20Snow:%20Observations%20and%20Comparisons%20with%20Theoretical%20Ice%20Particle%20Scattering%20Models&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Kulie,%20Mark%20S.&rft.date=2014-04-01&rft.volume=53&rft.issue=4&rft.spage=1080&rft.epage=1098&rft.pages=1080-1098&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/JAMC-D-13-066.1&rft_dat=%3Cjstor_proqu%3E26176357%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1523903415&rft_id=info:pmid/&rft_jstor_id=26176357&rfr_iscdi=true |