Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS
A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2016-08, Vol.55 (8), p.1831-1844 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1844 |
---|---|
container_issue | 8 |
container_start_page | 1831 |
container_title | Journal of applied meteorology and climatology |
container_volume | 55 |
creator | Leinonen, Jussi Lebsock, Matthew D. Stephens, Graeme L. Suzuki, Kentaroh |
description | A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path. |
doi_str_mv | 10.1175/jamc-d-16-0077.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2825539177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26179804</jstor_id><sourcerecordid>26179804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-809f69b3b20bce3b6cc273f3da522b65f5672e85e11fc502745125efe9aefcc13</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFbvXoQFz1t39jO5WeJXpaVgFY_LZrMLCU3TbpKC_70tkR49zWP4zXvDQ-gW6ARAy4fK1o4UBBShVOsJnKERSJmQRHB2ftJMXKKrtq0oFUJrOUKPs3obm70v8IfvYun3do2bgLN10xd4Xu76ssDftvMRh9jUw35lO2w3BV4sn2ara3QR7Lr1N39zjL5enj-zNzJfvs6y6Zw4wdKOJDQNKs15zmjuPM-Vc0zzwAsrGcuVDFJp5hPpAYKTlGkhgUkffGp9cA74GN0Pvod3d71vO1M1fdwcIg1LmJQ8Ba3_oyDhWnIQQh0oOlAuNm0bfTDbWNY2_hig5timeZ8uMvNkQJljm-YYfzecVG3XxBPPFOg0oYL_AnFXb7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837531446</pqid></control><display><type>article</type><title>Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS</title><source>2013</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Leinonen, Jussi ; Lebsock, Matthew D. ; Stephens, Graeme L. ; Suzuki, Kentaroh</creator><creatorcontrib>Leinonen, Jussi ; Lebsock, Matthew D. ; Stephens, Graeme L. ; Suzuki, Kentaroh</creatorcontrib><description>A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-16-0077.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosols ; Algorithms ; Bayesian analysis ; Cloud optical depth ; Cloud water ; Clouds ; Efficiency ; Expected values ; Ice ; Independent variables ; Meteorological satellites ; MODIS ; Moisture content ; Optical analysis ; Optical thickness ; Precipitation ; Probability theory ; Radar ; Radar reflectivity ; Reflectance ; Retrieval ; Satellites ; Water ; Water content ; Water depth</subject><ispartof>Journal of applied meteorology and climatology, 2016-08, Vol.55 (8), p.1831-1844</ispartof><rights>2016 American Meteorological Society</rights><rights>Copyright American Meteorological Society Aug 2016</rights><rights>Copyright American Meteorological Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-809f69b3b20bce3b6cc273f3da522b65f5672e85e11fc502745125efe9aefcc13</citedby><cites>FETCH-LOGICAL-c429t-809f69b3b20bce3b6cc273f3da522b65f5672e85e11fc502745125efe9aefcc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26179804$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26179804$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3672,27915,27916,58008,58241</link.rule.ids></links><search><creatorcontrib>Leinonen, Jussi</creatorcontrib><creatorcontrib>Lebsock, Matthew D.</creatorcontrib><creatorcontrib>Stephens, Graeme L.</creatorcontrib><creatorcontrib>Suzuki, Kentaroh</creatorcontrib><title>Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS</title><title>Journal of applied meteorology and climatology</title><description>A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path.</description><subject>Aerosols</subject><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Cloud optical depth</subject><subject>Cloud water</subject><subject>Clouds</subject><subject>Efficiency</subject><subject>Expected values</subject><subject>Ice</subject><subject>Independent variables</subject><subject>Meteorological satellites</subject><subject>MODIS</subject><subject>Moisture content</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Radar</subject><subject>Radar reflectivity</subject><subject>Reflectance</subject><subject>Retrieval</subject><subject>Satellites</subject><subject>Water</subject><subject>Water content</subject><subject>Water depth</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1Lw0AQxRdRsFbvXoQFz1t39jO5WeJXpaVgFY_LZrMLCU3TbpKC_70tkR49zWP4zXvDQ-gW6ARAy4fK1o4UBBShVOsJnKERSJmQRHB2ftJMXKKrtq0oFUJrOUKPs3obm70v8IfvYun3do2bgLN10xd4Xu76ssDftvMRh9jUw35lO2w3BV4sn2ara3QR7Lr1N39zjL5enj-zNzJfvs6y6Zw4wdKOJDQNKs15zmjuPM-Vc0zzwAsrGcuVDFJp5hPpAYKTlGkhgUkffGp9cA74GN0Pvod3d71vO1M1fdwcIg1LmJQ8Ba3_oyDhWnIQQh0oOlAuNm0bfTDbWNY2_hig5timeZ8uMvNkQJljm-YYfzecVG3XxBPPFOg0oYL_AnFXb7w</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Leinonen, Jussi</creator><creator>Lebsock, Matthew D.</creator><creator>Stephens, Graeme L.</creator><creator>Suzuki, Kentaroh</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20160801</creationdate><title>Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS</title><author>Leinonen, Jussi ; Lebsock, Matthew D. ; Stephens, Graeme L. ; Suzuki, Kentaroh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-809f69b3b20bce3b6cc273f3da522b65f5672e85e11fc502745125efe9aefcc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerosols</topic><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Cloud optical depth</topic><topic>Cloud water</topic><topic>Clouds</topic><topic>Efficiency</topic><topic>Expected values</topic><topic>Ice</topic><topic>Independent variables</topic><topic>Meteorological satellites</topic><topic>MODIS</topic><topic>Moisture content</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Radar</topic><topic>Radar reflectivity</topic><topic>Reflectance</topic><topic>Retrieval</topic><topic>Satellites</topic><topic>Water</topic><topic>Water content</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leinonen, Jussi</creatorcontrib><creatorcontrib>Lebsock, Matthew D.</creatorcontrib><creatorcontrib>Stephens, Graeme L.</creatorcontrib><creatorcontrib>Suzuki, Kentaroh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leinonen, Jussi</au><au>Lebsock, Matthew D.</au><au>Stephens, Graeme L.</au><au>Suzuki, Kentaroh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>55</volume><issue>8</issue><spage>1831</spage><epage>1844</epage><pages>1831-1844</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>A revised version of the CloudSat–MODIS cloud liquid water retrieval algorithm is presented. The new algorithm, which combines measurements of radar reflectivity and cloud optical depth, addresses issues discovered in the current CloudSat–MODIS cloud water content (CWC) product. This current product is shown to be underconstrained by observations and to be too dependent on prior information incorporated into the Bayesian optimal-estimation algorithm. The most significant change made to the algorithm in this study was decreasing the number of independent variables to allow the observations to constrain the retrieved values better. The retrieval was also reformulated for improved compliance with the mathematical assumptions of the optimal-estimation algorithm. To validate the accuracy of the revised algorithm, the path-integrated attenuation (PIA) of the CloudSat radar signal was computed from the algorithm results. These modeled values were compared with independent measurements of the PIA that were obtained using a surface reference technique. This comparison shows that the cloud liquid water retrieved by the algorithm is close to being unbiased. The revised algorithm was also found to be an improvement over the current CloudSat CWC product and, to a lesser degree, the MODIS-derived cloud liquid water path.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-16-0077.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2016-08, Vol.55 (8), p.1831-1844 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_journals_2825539177 |
source | 2013; Alma/SFX Local Collection; JSTOR; EZB Electronic Journals Library |
subjects | Aerosols Algorithms Bayesian analysis Cloud optical depth Cloud water Clouds Efficiency Expected values Ice Independent variables Meteorological satellites MODIS Moisture content Optical analysis Optical thickness Precipitation Probability theory Radar Radar reflectivity Reflectance Retrieval Satellites Water Water content Water depth |
title | Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Retrieval%20of%20Cloud%20Liquid%20Water%20from%20CloudSat%20and%20MODIS&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Leinonen,%20Jussi&rft.date=2016-08-01&rft.volume=55&rft.issue=8&rft.spage=1831&rft.epage=1844&rft.pages=1831-1844&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/jamc-d-16-0077.1&rft_dat=%3Cjstor_proqu%3E26179804%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837531446&rft_id=info:pmid/&rft_jstor_id=26179804&rfr_iscdi=true |