Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization

Feature visualization has gained substantial popularity, particularly after the influential work by Olah et al. in 2017, which established it as a crucial tool for explainability. However, its widespread adoption has been limited due to a reliance on tricks to generate interpretable images, and corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Fel, Thomas, Boissin, Thibaut, Boutin, Victor, Picard, Agustin, Novello, Paul, Julien, Colin, Linsley, Drew, Rousseau, Tom, Cadène, Rémi, Goetschalckx, Lore, Gardes, Laurent, Serre, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fel, Thomas
Boissin, Thibaut
Boutin, Victor
Picard, Agustin
Novello, Paul
Julien, Colin
Linsley, Drew
Rousseau, Tom
Cadène, Rémi
Goetschalckx, Lore
Gardes, Laurent
Serre, Thomas
description Feature visualization has gained substantial popularity, particularly after the influential work by Olah et al. in 2017, which established it as a crucial tool for explainability. However, its widespread adoption has been limited due to a reliance on tricks to generate interpretable images, and corresponding challenges in scaling it to deeper neural networks. Here, we describe MACO, a simple approach to address these shortcomings. The main idea is to generate images by optimizing the phase spectrum while keeping the magnitude constant to ensure that generated explanations lie in the space of natural images. Our approach yields significantly better results (both qualitatively and quantitatively) and unlocks efficient and interpretable feature visualizations for large state-of-the-art neural networks. We also show that our approach exhibits an attribution mechanism allowing us to augment feature visualizations with spatial importance. We validate our method on a novel benchmark for comparing feature visualization methods, and release its visualizations for all classes of the ImageNet dataset on https://serre-lab.github.io/Lens/. Overall, our approach unlocks, for the first time, feature visualizations for large, state-of-the-art deep neural networks without resorting to any parametric prior image model.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825307513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825307513</sourcerecordid><originalsourceid>FETCH-proquest_journals_28253075133</originalsourceid><addsrcrecordid>eNqNi70OgjAYABsTE4nyDl_iTAKtFVaDEhd1URcH0sgHFrDF_oTEp9fBB3C64e4mJKCMJVG2onRGQmvbOI7pOqWcs4DcLqrX906qBgoUzhuEq7Re9PItnNQKam1giziggSO6UZvOwijdAw6bRknnK4RcK-uMkAorOA1OPn_vgkxr0VsMf5yTZbE75_toMPrl0bqy1d6oryppRjmLU54w9l_1Aeg0Q-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825307513</pqid></control><display><type>article</type><title>Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Fel, Thomas ; Boissin, Thibaut ; Boutin, Victor ; Picard, Agustin ; Novello, Paul ; Julien, Colin ; Linsley, Drew ; Rousseau, Tom ; Cadène, Rémi ; Goetschalckx, Lore ; Gardes, Laurent ; Serre, Thomas</creator><creatorcontrib>Fel, Thomas ; Boissin, Thibaut ; Boutin, Victor ; Picard, Agustin ; Novello, Paul ; Julien, Colin ; Linsley, Drew ; Rousseau, Tom ; Cadène, Rémi ; Goetschalckx, Lore ; Gardes, Laurent ; Serre, Thomas</creatorcontrib><description>Feature visualization has gained substantial popularity, particularly after the influential work by Olah et al. in 2017, which established it as a crucial tool for explainability. However, its widespread adoption has been limited due to a reliance on tricks to generate interpretable images, and corresponding challenges in scaling it to deeper neural networks. Here, we describe MACO, a simple approach to address these shortcomings. The main idea is to generate images by optimizing the phase spectrum while keeping the magnitude constant to ensure that generated explanations lie in the space of natural images. Our approach yields significantly better results (both qualitatively and quantitatively) and unlocks efficient and interpretable feature visualizations for large state-of-the-art neural networks. We also show that our approach exhibits an attribution mechanism allowing us to augment feature visualizations with spatial importance. We validate our method on a novel benchmark for comparing feature visualization methods, and release its visualizations for all classes of the ImageNet dataset on https://serre-lab.github.io/Lens/. Overall, our approach unlocks, for the first time, feature visualizations for large, state-of-the-art deep neural networks without resorting to any parametric prior image model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Neural networks ; Optimization ; Visualization</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Fel, Thomas</creatorcontrib><creatorcontrib>Boissin, Thibaut</creatorcontrib><creatorcontrib>Boutin, Victor</creatorcontrib><creatorcontrib>Picard, Agustin</creatorcontrib><creatorcontrib>Novello, Paul</creatorcontrib><creatorcontrib>Julien, Colin</creatorcontrib><creatorcontrib>Linsley, Drew</creatorcontrib><creatorcontrib>Rousseau, Tom</creatorcontrib><creatorcontrib>Cadène, Rémi</creatorcontrib><creatorcontrib>Goetschalckx, Lore</creatorcontrib><creatorcontrib>Gardes, Laurent</creatorcontrib><creatorcontrib>Serre, Thomas</creatorcontrib><title>Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization</title><title>arXiv.org</title><description>Feature visualization has gained substantial popularity, particularly after the influential work by Olah et al. in 2017, which established it as a crucial tool for explainability. However, its widespread adoption has been limited due to a reliance on tricks to generate interpretable images, and corresponding challenges in scaling it to deeper neural networks. Here, we describe MACO, a simple approach to address these shortcomings. The main idea is to generate images by optimizing the phase spectrum while keeping the magnitude constant to ensure that generated explanations lie in the space of natural images. Our approach yields significantly better results (both qualitatively and quantitatively) and unlocks efficient and interpretable feature visualizations for large state-of-the-art neural networks. We also show that our approach exhibits an attribution mechanism allowing us to augment feature visualizations with spatial importance. We validate our method on a novel benchmark for comparing feature visualization methods, and release its visualizations for all classes of the ImageNet dataset on https://serre-lab.github.io/Lens/. Overall, our approach unlocks, for the first time, feature visualizations for large, state-of-the-art deep neural networks without resorting to any parametric prior image model.</description><subject>Artificial neural networks</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Visualization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70OgjAYABsTE4nyDl_iTAKtFVaDEhd1URcH0sgHFrDF_oTEp9fBB3C64e4mJKCMJVG2onRGQmvbOI7pOqWcs4DcLqrX906qBgoUzhuEq7Re9PItnNQKam1giziggSO6UZvOwijdAw6bRknnK4RcK-uMkAorOA1OPn_vgkxr0VsMf5yTZbE75_toMPrl0bqy1d6oryppRjmLU54w9l_1Aeg0Q-Q</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Fel, Thomas</creator><creator>Boissin, Thibaut</creator><creator>Boutin, Victor</creator><creator>Picard, Agustin</creator><creator>Novello, Paul</creator><creator>Julien, Colin</creator><creator>Linsley, Drew</creator><creator>Rousseau, Tom</creator><creator>Cadène, Rémi</creator><creator>Goetschalckx, Lore</creator><creator>Gardes, Laurent</creator><creator>Serre, Thomas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241210</creationdate><title>Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization</title><author>Fel, Thomas ; Boissin, Thibaut ; Boutin, Victor ; Picard, Agustin ; Novello, Paul ; Julien, Colin ; Linsley, Drew ; Rousseau, Tom ; Cadène, Rémi ; Goetschalckx, Lore ; Gardes, Laurent ; Serre, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28253075133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fel, Thomas</creatorcontrib><creatorcontrib>Boissin, Thibaut</creatorcontrib><creatorcontrib>Boutin, Victor</creatorcontrib><creatorcontrib>Picard, Agustin</creatorcontrib><creatorcontrib>Novello, Paul</creatorcontrib><creatorcontrib>Julien, Colin</creatorcontrib><creatorcontrib>Linsley, Drew</creatorcontrib><creatorcontrib>Rousseau, Tom</creatorcontrib><creatorcontrib>Cadène, Rémi</creatorcontrib><creatorcontrib>Goetschalckx, Lore</creatorcontrib><creatorcontrib>Gardes, Laurent</creatorcontrib><creatorcontrib>Serre, Thomas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fel, Thomas</au><au>Boissin, Thibaut</au><au>Boutin, Victor</au><au>Picard, Agustin</au><au>Novello, Paul</au><au>Julien, Colin</au><au>Linsley, Drew</au><au>Rousseau, Tom</au><au>Cadène, Rémi</au><au>Goetschalckx, Lore</au><au>Gardes, Laurent</au><au>Serre, Thomas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization</atitle><jtitle>arXiv.org</jtitle><date>2024-12-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Feature visualization has gained substantial popularity, particularly after the influential work by Olah et al. in 2017, which established it as a crucial tool for explainability. However, its widespread adoption has been limited due to a reliance on tricks to generate interpretable images, and corresponding challenges in scaling it to deeper neural networks. Here, we describe MACO, a simple approach to address these shortcomings. The main idea is to generate images by optimizing the phase spectrum while keeping the magnitude constant to ensure that generated explanations lie in the space of natural images. Our approach yields significantly better results (both qualitatively and quantitatively) and unlocks efficient and interpretable feature visualizations for large state-of-the-art neural networks. We also show that our approach exhibits an attribution mechanism allowing us to augment feature visualizations with spatial importance. We validate our method on a novel benchmark for comparing feature visualization methods, and release its visualizations for all classes of the ImageNet dataset on https://serre-lab.github.io/Lens/. Overall, our approach unlocks, for the first time, feature visualizations for large, state-of-the-art deep neural networks without resorting to any parametric prior image model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2825307513
source Open Access: Freely Accessible Journals by multiple vendors
subjects Artificial neural networks
Neural networks
Optimization
Visualization
title Unlocking Feature Visualization for Deeper Networks with MAgnitude Constrained Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Unlocking%20Feature%20Visualization%20for%20Deeper%20Networks%20with%20MAgnitude%20Constrained%20Optimization&rft.jtitle=arXiv.org&rft.au=Fel,%20Thomas&rft.date=2024-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2825307513%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825307513&rft_id=info:pmid/&rfr_iscdi=true