Heat Transport and Convective Velocities in Compositionally Driven Convection in Neutron Star and White Dwarf Interiors
We investigate heat transport associated with compositionally driven convection driven by crystallization at the ocean–crust interface in accreting neutron stars, or growth of the solid core in cooling white dwarfs. We study the effect of thermal diffusion and rapid rotation on the convective heat t...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2023-06, Vol.950 (1), p.73 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 73 |
container_title | The Astrophysical journal |
container_volume | 950 |
creator | Fuentes, J. R. Cumming, Andrew Castro-Tapia, Matias Anders, Evan H. |
description | We investigate heat transport associated with compositionally driven convection driven by crystallization at the ocean–crust interface in accreting neutron stars, or growth of the solid core in cooling white dwarfs. We study the effect of thermal diffusion and rapid rotation on the convective heat transport, using both mixing length theory and numerical simulations of Boussinesq convection. We determine the heat flux, composition gradient, and Péclet number, Pe (the ratio of thermal diffusion time to convective turnover time) as a function of the composition flux. We find two regimes of convection with a rapid transition between them as the composition flux increases. At small Pe, the ratio between the heat flux and composition flux is independent of Pe, because the loss of heat from convecting fluid elements due to thermal diffusion is offset by the smaller composition gradient needed to overcome the reduced thermal buoyancy. At large Pe, the temperature gradient approaches the adiabatic gradient, saturating the heat flux. We discuss the implications for cooling of neutron stars and white dwarfs. Convection in neutron stars spans both regimes. We find rapid mixing of neutron star oceans, with a convective turnover time of the order of weeks to minutes depending on rotation. Except during the early stages of core crystallization, white dwarf convection is in the thermal-diffusion-dominated fingering regime. We find convective velocities much smaller than recent estimates for crystallization-driven dynamos. The small fraction of energy carried as kinetic energy calls into question the effectiveness of crystallization-driven dynamos as an explanation for observed magnetic fields in white dwarfs. |
doi_str_mv | 10.3847/1538-4357/accb56 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2825212060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff92d12226e4404abbb80d1a41931d07</doaj_id><sourcerecordid>2825212060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-eef7f646e2a3418f8323c1341d62e59133cd03d251c9551e65c8eefc1fd8ae73</originalsourceid><addsrcrecordid>eNp9kTtvFDEUhS1EJJZATzkSlEzi5zxKtAGyUgRFVgmddde-Bq8m48H2Jsq_x5OJlgZR3dd3jiUfQt4xeiY62Z4zJbpaCtWegzE71bwgq-PqJVlRSmXdiPbHK_I6pf088r5fkYdLhFxtI4xpCjFXMNpqHcZ7NNnfY3WDQzA-e0yVH8vhbgqpjGGEYXisLmJhxiMfxhn6hoccS3udIT7Z3f7yGauLB4iu2owZow8xvSEnDoaEb5_rKdl--bxdX9ZX379u1p-uaiOlyjWia10jG-QgJOtcJ7gwrLS24ah6JoSxVFiumOmVYtgo0xWNYc52gK04JZvF1gbY6yn6O4iPOoDXT4sQf2qI2ZsBtXM9t4xz3qCUVMJut-uoZSBZL5ils9f7xWuK4fcBU9b7cIjlJ5LmHVeccdrQQtGFMjGkFNEdX2VUz0npORY9x6KXpIrk4yLxYfrr-R_8wz9wmPa6V1Qz3Qo9WSf-AFa7opo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825212060</pqid></control><display><type>article</type><title>Heat Transport and Convective Velocities in Compositionally Driven Convection in Neutron Star and White Dwarf Interiors</title><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Fuentes, J. R. ; Cumming, Andrew ; Castro-Tapia, Matias ; Anders, Evan H.</creator><creatorcontrib>Fuentes, J. R. ; Cumming, Andrew ; Castro-Tapia, Matias ; Anders, Evan H.</creatorcontrib><description>We investigate heat transport associated with compositionally driven convection driven by crystallization at the ocean–crust interface in accreting neutron stars, or growth of the solid core in cooling white dwarfs. We study the effect of thermal diffusion and rapid rotation on the convective heat transport, using both mixing length theory and numerical simulations of Boussinesq convection. We determine the heat flux, composition gradient, and Péclet number, Pe (the ratio of thermal diffusion time to convective turnover time) as a function of the composition flux. We find two regimes of convection with a rapid transition between them as the composition flux increases. At small Pe, the ratio between the heat flux and composition flux is independent of Pe, because the loss of heat from convecting fluid elements due to thermal diffusion is offset by the smaller composition gradient needed to overcome the reduced thermal buoyancy. At large Pe, the temperature gradient approaches the adiabatic gradient, saturating the heat flux. We discuss the implications for cooling of neutron stars and white dwarfs. Convection in neutron stars spans both regimes. We find rapid mixing of neutron star oceans, with a convective turnover time of the order of weeks to minutes depending on rotation. Except during the early stages of core crystallization, white dwarf convection is in the thermal-diffusion-dominated fingering regime. We find convective velocities much smaller than recent estimates for crystallization-driven dynamos. The small fraction of energy carried as kinetic energy calls into question the effectiveness of crystallization-driven dynamos as an explanation for observed magnetic fields in white dwarfs.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/accb56</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Boussinesq equations ; Composition ; Convection ; Convection cooling ; Cooling ; Crystallization ; Deposition ; Diffusion effects ; Fluctuations ; Heat flux ; Heat transfer ; Heat transport ; Kinetic energy ; Magnetic fields ; Mixing length ; Neutron stars ; Neutrons ; Numerical simulations ; Oceans ; Rotating generators ; Rotation ; Stars ; Stars & galaxies ; Stellar convective zones ; Temperature gradients ; Thermal diffusion ; Turnover time ; White dwarf stars ; X-ray binary stars</subject><ispartof>The Astrophysical journal, 2023-06, Vol.950 (1), p.73</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-eef7f646e2a3418f8323c1341d62e59133cd03d251c9551e65c8eefc1fd8ae73</citedby><cites>FETCH-LOGICAL-c445t-eef7f646e2a3418f8323c1341d62e59133cd03d251c9551e65c8eefc1fd8ae73</cites><orcidid>0000-0002-6335-0169 ; 0000-0002-3433-4733 ; 0000-0003-2124-9764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/accb56/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Fuentes, J. R.</creatorcontrib><creatorcontrib>Cumming, Andrew</creatorcontrib><creatorcontrib>Castro-Tapia, Matias</creatorcontrib><creatorcontrib>Anders, Evan H.</creatorcontrib><title>Heat Transport and Convective Velocities in Compositionally Driven Convection in Neutron Star and White Dwarf Interiors</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate heat transport associated with compositionally driven convection driven by crystallization at the ocean–crust interface in accreting neutron stars, or growth of the solid core in cooling white dwarfs. We study the effect of thermal diffusion and rapid rotation on the convective heat transport, using both mixing length theory and numerical simulations of Boussinesq convection. We determine the heat flux, composition gradient, and Péclet number, Pe (the ratio of thermal diffusion time to convective turnover time) as a function of the composition flux. We find two regimes of convection with a rapid transition between them as the composition flux increases. At small Pe, the ratio between the heat flux and composition flux is independent of Pe, because the loss of heat from convecting fluid elements due to thermal diffusion is offset by the smaller composition gradient needed to overcome the reduced thermal buoyancy. At large Pe, the temperature gradient approaches the adiabatic gradient, saturating the heat flux. We discuss the implications for cooling of neutron stars and white dwarfs. Convection in neutron stars spans both regimes. We find rapid mixing of neutron star oceans, with a convective turnover time of the order of weeks to minutes depending on rotation. Except during the early stages of core crystallization, white dwarf convection is in the thermal-diffusion-dominated fingering regime. We find convective velocities much smaller than recent estimates for crystallization-driven dynamos. The small fraction of energy carried as kinetic energy calls into question the effectiveness of crystallization-driven dynamos as an explanation for observed magnetic fields in white dwarfs.</description><subject>Astrophysics</subject><subject>Boussinesq equations</subject><subject>Composition</subject><subject>Convection</subject><subject>Convection cooling</subject><subject>Cooling</subject><subject>Crystallization</subject><subject>Deposition</subject><subject>Diffusion effects</subject><subject>Fluctuations</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Kinetic energy</subject><subject>Magnetic fields</subject><subject>Mixing length</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Numerical simulations</subject><subject>Oceans</subject><subject>Rotating generators</subject><subject>Rotation</subject><subject>Stars</subject><subject>Stars & galaxies</subject><subject>Stellar convective zones</subject><subject>Temperature gradients</subject><subject>Thermal diffusion</subject><subject>Turnover time</subject><subject>White dwarf stars</subject><subject>X-ray binary stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTtvFDEUhS1EJJZATzkSlEzi5zxKtAGyUgRFVgmddde-Bq8m48H2Jsq_x5OJlgZR3dd3jiUfQt4xeiY62Z4zJbpaCtWegzE71bwgq-PqJVlRSmXdiPbHK_I6pf088r5fkYdLhFxtI4xpCjFXMNpqHcZ7NNnfY3WDQzA-e0yVH8vhbgqpjGGEYXisLmJhxiMfxhn6hoccS3udIT7Z3f7yGauLB4iu2owZow8xvSEnDoaEb5_rKdl--bxdX9ZX379u1p-uaiOlyjWia10jG-QgJOtcJ7gwrLS24ah6JoSxVFiumOmVYtgo0xWNYc52gK04JZvF1gbY6yn6O4iPOoDXT4sQf2qI2ZsBtXM9t4xz3qCUVMJut-uoZSBZL5ils9f7xWuK4fcBU9b7cIjlJ5LmHVeccdrQQtGFMjGkFNEdX2VUz0npORY9x6KXpIrk4yLxYfrr-R_8wz9wmPa6V1Qz3Qo9WSf-AFa7opo</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Fuentes, J. R.</creator><creator>Cumming, Andrew</creator><creator>Castro-Tapia, Matias</creator><creator>Anders, Evan H.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6335-0169</orcidid><orcidid>https://orcid.org/0000-0002-3433-4733</orcidid><orcidid>https://orcid.org/0000-0003-2124-9764</orcidid></search><sort><creationdate>20230601</creationdate><title>Heat Transport and Convective Velocities in Compositionally Driven Convection in Neutron Star and White Dwarf Interiors</title><author>Fuentes, J. R. ; Cumming, Andrew ; Castro-Tapia, Matias ; Anders, Evan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-eef7f646e2a3418f8323c1341d62e59133cd03d251c9551e65c8eefc1fd8ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Boussinesq equations</topic><topic>Composition</topic><topic>Convection</topic><topic>Convection cooling</topic><topic>Cooling</topic><topic>Crystallization</topic><topic>Deposition</topic><topic>Diffusion effects</topic><topic>Fluctuations</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Kinetic energy</topic><topic>Magnetic fields</topic><topic>Mixing length</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Numerical simulations</topic><topic>Oceans</topic><topic>Rotating generators</topic><topic>Rotation</topic><topic>Stars</topic><topic>Stars & galaxies</topic><topic>Stellar convective zones</topic><topic>Temperature gradients</topic><topic>Thermal diffusion</topic><topic>Turnover time</topic><topic>White dwarf stars</topic><topic>X-ray binary stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuentes, J. R.</creatorcontrib><creatorcontrib>Cumming, Andrew</creatorcontrib><creatorcontrib>Castro-Tapia, Matias</creatorcontrib><creatorcontrib>Anders, Evan H.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuentes, J. R.</au><au>Cumming, Andrew</au><au>Castro-Tapia, Matias</au><au>Anders, Evan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transport and Convective Velocities in Compositionally Driven Convection in Neutron Star and White Dwarf Interiors</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>950</volume><issue>1</issue><spage>73</spage><pages>73-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate heat transport associated with compositionally driven convection driven by crystallization at the ocean–crust interface in accreting neutron stars, or growth of the solid core in cooling white dwarfs. We study the effect of thermal diffusion and rapid rotation on the convective heat transport, using both mixing length theory and numerical simulations of Boussinesq convection. We determine the heat flux, composition gradient, and Péclet number, Pe (the ratio of thermal diffusion time to convective turnover time) as a function of the composition flux. We find two regimes of convection with a rapid transition between them as the composition flux increases. At small Pe, the ratio between the heat flux and composition flux is independent of Pe, because the loss of heat from convecting fluid elements due to thermal diffusion is offset by the smaller composition gradient needed to overcome the reduced thermal buoyancy. At large Pe, the temperature gradient approaches the adiabatic gradient, saturating the heat flux. We discuss the implications for cooling of neutron stars and white dwarfs. Convection in neutron stars spans both regimes. We find rapid mixing of neutron star oceans, with a convective turnover time of the order of weeks to minutes depending on rotation. Except during the early stages of core crystallization, white dwarf convection is in the thermal-diffusion-dominated fingering regime. We find convective velocities much smaller than recent estimates for crystallization-driven dynamos. The small fraction of energy carried as kinetic energy calls into question the effectiveness of crystallization-driven dynamos as an explanation for observed magnetic fields in white dwarfs.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/accb56</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6335-0169</orcidid><orcidid>https://orcid.org/0000-0002-3433-4733</orcidid><orcidid>https://orcid.org/0000-0003-2124-9764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2023-06, Vol.950 (1), p.73 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2825212060 |
source | EZB Free E-Journals; DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection |
subjects | Astrophysics Boussinesq equations Composition Convection Convection cooling Cooling Crystallization Deposition Diffusion effects Fluctuations Heat flux Heat transfer Heat transport Kinetic energy Magnetic fields Mixing length Neutron stars Neutrons Numerical simulations Oceans Rotating generators Rotation Stars Stars & galaxies Stellar convective zones Temperature gradients Thermal diffusion Turnover time White dwarf stars X-ray binary stars |
title | Heat Transport and Convective Velocities in Compositionally Driven Convection in Neutron Star and White Dwarf Interiors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transport%20and%20Convective%20Velocities%20in%20Compositionally%20Driven%20Convection%20in%20Neutron%20Star%20and%20White%20Dwarf%20Interiors&rft.jtitle=The%20Astrophysical%20journal&rft.au=Fuentes,%20J.%20R.&rft.date=2023-06-01&rft.volume=950&rft.issue=1&rft.spage=73&rft.pages=73-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/accb56&rft_dat=%3Cproquest_doaj_%3E2825212060%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825212060&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ff92d12226e4404abbb80d1a41931d07&rfr_iscdi=true |