Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4
The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a...
Gespeichert in:
Veröffentlicht in: | Sustainable energy & fuels 2023-06, Vol.7 (12), p.2923-2933 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2933 |
---|---|
container_issue | 12 |
container_start_page | 2923 |
container_title | Sustainable energy & fuels |
container_volume | 7 |
creator | Wu, Xiaofeng Oropeza, Freddy E Zheng, Qi Einert, Marcus Tian, Chuanmu Maheu, Clément Lv, Kangle Hofmann, Jan P |
description | The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7. |
doi_str_mv | 10.1039/d3se00061c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825148187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825148187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-49459a1576587636da0a4c8855fd8f3923c93068cf34440aa27b0356032e4d073</originalsourceid><addsrcrecordid>eNotTstKAzEUDYJgqd34BQHX1ZvnZJZafBQq3ajbcs2jkzImY2aK-vcGKhw4cDgvQq4Y3DAQ7a0TowcAzewZmXHRmqVsgV-QxTgeqs4Zl1w1M5LWKfRHn6ynOdCXTF0eYtrTnGhMky8BbcSe2g7L3lOLpURfqPtN-BntWD106PKUfe_tVLLtfJWr_xtrluaf6HCKtaviPr5v5SU5D9iPfvHPc_L2-PC6el5utk_r1d1mabmGqX6VqkWmGq1Mo4V2CCitMUoFZ4JoubCtAG1sEFJKQOTNBwilQXAvHTRiTq5PvUPJX0c_TrtDPpZUJ3fccMWkYaYRf69WWO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825148187</pqid></control><display><type>article</type><title>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wu, Xiaofeng ; Oropeza, Freddy E ; Zheng, Qi ; Einert, Marcus ; Tian, Chuanmu ; Maheu, Clément ; Lv, Kangle ; Hofmann, Jan P</creator><creatorcontrib>Wu, Xiaofeng ; Oropeza, Freddy E ; Zheng, Qi ; Einert, Marcus ; Tian, Chuanmu ; Maheu, Clément ; Lv, Kangle ; Hofmann, Jan P</creatorcontrib><description>The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7.</description><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d3se00061c</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Bismuth oxides ; Buffer solutions ; Carrier mobility ; Carrier recombination ; Charge transfer ; Current carriers ; Density ; Doping ; Electrochemistry ; Kinetics ; Molybdenum ; Optimization ; Oxidation ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; Photoelectrochemistry ; Recombination ; Vanadate ; Vanadates ; Water splitting</subject><ispartof>Sustainable energy & fuels, 2023-06, Vol.7 (12), p.2923-2933</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-49459a1576587636da0a4c8855fd8f3923c93068cf34440aa27b0356032e4d073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Oropeza, Freddy E</creatorcontrib><creatorcontrib>Zheng, Qi</creatorcontrib><creatorcontrib>Einert, Marcus</creatorcontrib><creatorcontrib>Tian, Chuanmu</creatorcontrib><creatorcontrib>Maheu, Clément</creatorcontrib><creatorcontrib>Lv, Kangle</creatorcontrib><creatorcontrib>Hofmann, Jan P</creatorcontrib><title>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</title><title>Sustainable energy & fuels</title><description>The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7.</description><subject>Bismuth oxides</subject><subject>Buffer solutions</subject><subject>Carrier mobility</subject><subject>Carrier recombination</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Density</subject><subject>Doping</subject><subject>Electrochemistry</subject><subject>Kinetics</subject><subject>Molybdenum</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrochemistry</subject><subject>Recombination</subject><subject>Vanadate</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotTstKAzEUDYJgqd34BQHX1ZvnZJZafBQq3ajbcs2jkzImY2aK-vcGKhw4cDgvQq4Y3DAQ7a0TowcAzewZmXHRmqVsgV-QxTgeqs4Zl1w1M5LWKfRHn6ynOdCXTF0eYtrTnGhMky8BbcSe2g7L3lOLpURfqPtN-BntWD106PKUfe_tVLLtfJWr_xtrluaf6HCKtaviPr5v5SU5D9iPfvHPc_L2-PC6el5utk_r1d1mabmGqX6VqkWmGq1Mo4V2CCitMUoFZ4JoubCtAG1sEFJKQOTNBwilQXAvHTRiTq5PvUPJX0c_TrtDPpZUJ3fccMWkYaYRf69WWO4</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Wu, Xiaofeng</creator><creator>Oropeza, Freddy E</creator><creator>Zheng, Qi</creator><creator>Einert, Marcus</creator><creator>Tian, Chuanmu</creator><creator>Maheu, Clément</creator><creator>Lv, Kangle</creator><creator>Hofmann, Jan P</creator><general>Royal Society of Chemistry</general><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20230613</creationdate><title>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</title><author>Wu, Xiaofeng ; Oropeza, Freddy E ; Zheng, Qi ; Einert, Marcus ; Tian, Chuanmu ; Maheu, Clément ; Lv, Kangle ; Hofmann, Jan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-49459a1576587636da0a4c8855fd8f3923c93068cf34440aa27b0356032e4d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bismuth oxides</topic><topic>Buffer solutions</topic><topic>Carrier mobility</topic><topic>Carrier recombination</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Density</topic><topic>Doping</topic><topic>Electrochemistry</topic><topic>Kinetics</topic><topic>Molybdenum</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrochemistry</topic><topic>Recombination</topic><topic>Vanadate</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Oropeza, Freddy E</creatorcontrib><creatorcontrib>Zheng, Qi</creatorcontrib><creatorcontrib>Einert, Marcus</creatorcontrib><creatorcontrib>Tian, Chuanmu</creatorcontrib><creatorcontrib>Maheu, Clément</creatorcontrib><creatorcontrib>Lv, Kangle</creatorcontrib><creatorcontrib>Hofmann, Jan P</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaofeng</au><au>Oropeza, Freddy E</au><au>Zheng, Qi</au><au>Einert, Marcus</au><au>Tian, Chuanmu</au><au>Maheu, Clément</au><au>Lv, Kangle</au><au>Hofmann, Jan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</atitle><jtitle>Sustainable energy & fuels</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>7</volume><issue>12</issue><spage>2923</spage><epage>2933</epage><pages>2923-2933</pages><eissn>2398-4902</eissn><abstract>The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3se00061c</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2398-4902 |
ispartof | Sustainable energy & fuels, 2023-06, Vol.7 (12), p.2923-2933 |
issn | 2398-4902 |
language | eng |
recordid | cdi_proquest_journals_2825148187 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bismuth oxides Buffer solutions Carrier mobility Carrier recombination Charge transfer Current carriers Density Doping Electrochemistry Kinetics Molybdenum Optimization Oxidation Oxygen evolution reactions Photoelectric effect Photoelectric emission Photoelectrochemistry Recombination Vanadate Vanadates Water splitting |
title | Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Mo%20doping%20on%20interfacial%20charge%20carrier%20dynamics%20in%20photoelectrochemical%20water%20oxidation%20on%20BiVO4&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Wu,%20Xiaofeng&rft.date=2023-06-13&rft.volume=7&rft.issue=12&rft.spage=2923&rft.epage=2933&rft.pages=2923-2933&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d3se00061c&rft_dat=%3Cproquest%3E2825148187%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825148187&rft_id=info:pmid/&rfr_iscdi=true |