Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4

The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable energy & fuels 2023-06, Vol.7 (12), p.2923-2933
Hauptverfasser: Wu, Xiaofeng, Oropeza, Freddy E, Zheng, Qi, Einert, Marcus, Tian, Chuanmu, Maheu, Clément, Lv, Kangle, Hofmann, Jan P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2933
container_issue 12
container_start_page 2923
container_title Sustainable energy & fuels
container_volume 7
creator Wu, Xiaofeng
Oropeza, Freddy E
Zheng, Qi
Einert, Marcus
Tian, Chuanmu
Maheu, Clément
Lv, Kangle
Hofmann, Jan P
description The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7.
doi_str_mv 10.1039/d3se00061c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2825148187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825148187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-49459a1576587636da0a4c8855fd8f3923c93068cf34440aa27b0356032e4d073</originalsourceid><addsrcrecordid>eNotTstKAzEUDYJgqd34BQHX1ZvnZJZafBQq3ajbcs2jkzImY2aK-vcGKhw4cDgvQq4Y3DAQ7a0TowcAzewZmXHRmqVsgV-QxTgeqs4Zl1w1M5LWKfRHn6ynOdCXTF0eYtrTnGhMky8BbcSe2g7L3lOLpURfqPtN-BntWD106PKUfe_tVLLtfJWr_xtrluaf6HCKtaviPr5v5SU5D9iPfvHPc_L2-PC6el5utk_r1d1mabmGqX6VqkWmGq1Mo4V2CCitMUoFZ4JoubCtAG1sEFJKQOTNBwilQXAvHTRiTq5PvUPJX0c_TrtDPpZUJ3fccMWkYaYRf69WWO4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825148187</pqid></control><display><type>article</type><title>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wu, Xiaofeng ; Oropeza, Freddy E ; Zheng, Qi ; Einert, Marcus ; Tian, Chuanmu ; Maheu, Clément ; Lv, Kangle ; Hofmann, Jan P</creator><creatorcontrib>Wu, Xiaofeng ; Oropeza, Freddy E ; Zheng, Qi ; Einert, Marcus ; Tian, Chuanmu ; Maheu, Clément ; Lv, Kangle ; Hofmann, Jan P</creatorcontrib><description>The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7.</description><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/d3se00061c</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Bismuth oxides ; Buffer solutions ; Carrier mobility ; Carrier recombination ; Charge transfer ; Current carriers ; Density ; Doping ; Electrochemistry ; Kinetics ; Molybdenum ; Optimization ; Oxidation ; Oxygen evolution reactions ; Photoelectric effect ; Photoelectric emission ; Photoelectrochemistry ; Recombination ; Vanadate ; Vanadates ; Water splitting</subject><ispartof>Sustainable energy &amp; fuels, 2023-06, Vol.7 (12), p.2923-2933</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-49459a1576587636da0a4c8855fd8f3923c93068cf34440aa27b0356032e4d073</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Oropeza, Freddy E</creatorcontrib><creatorcontrib>Zheng, Qi</creatorcontrib><creatorcontrib>Einert, Marcus</creatorcontrib><creatorcontrib>Tian, Chuanmu</creatorcontrib><creatorcontrib>Maheu, Clément</creatorcontrib><creatorcontrib>Lv, Kangle</creatorcontrib><creatorcontrib>Hofmann, Jan P</creatorcontrib><title>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</title><title>Sustainable energy &amp; fuels</title><description>The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7.</description><subject>Bismuth oxides</subject><subject>Buffer solutions</subject><subject>Carrier mobility</subject><subject>Carrier recombination</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Density</subject><subject>Doping</subject><subject>Electrochemistry</subject><subject>Kinetics</subject><subject>Molybdenum</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrochemistry</subject><subject>Recombination</subject><subject>Vanadate</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotTstKAzEUDYJgqd34BQHX1ZvnZJZafBQq3ajbcs2jkzImY2aK-vcGKhw4cDgvQq4Y3DAQ7a0TowcAzewZmXHRmqVsgV-QxTgeqs4Zl1w1M5LWKfRHn6ynOdCXTF0eYtrTnGhMky8BbcSe2g7L3lOLpURfqPtN-BntWD106PKUfe_tVLLtfJWr_xtrluaf6HCKtaviPr5v5SU5D9iPfvHPc_L2-PC6el5utk_r1d1mabmGqX6VqkWmGq1Mo4V2CCitMUoFZ4JoubCtAG1sEFJKQOTNBwilQXAvHTRiTq5PvUPJX0c_TrtDPpZUJ3fccMWkYaYRf69WWO4</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Wu, Xiaofeng</creator><creator>Oropeza, Freddy E</creator><creator>Zheng, Qi</creator><creator>Einert, Marcus</creator><creator>Tian, Chuanmu</creator><creator>Maheu, Clément</creator><creator>Lv, Kangle</creator><creator>Hofmann, Jan P</creator><general>Royal Society of Chemistry</general><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20230613</creationdate><title>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</title><author>Wu, Xiaofeng ; Oropeza, Freddy E ; Zheng, Qi ; Einert, Marcus ; Tian, Chuanmu ; Maheu, Clément ; Lv, Kangle ; Hofmann, Jan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-49459a1576587636da0a4c8855fd8f3923c93068cf34440aa27b0356032e4d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bismuth oxides</topic><topic>Buffer solutions</topic><topic>Carrier mobility</topic><topic>Carrier recombination</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Density</topic><topic>Doping</topic><topic>Electrochemistry</topic><topic>Kinetics</topic><topic>Molybdenum</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrochemistry</topic><topic>Recombination</topic><topic>Vanadate</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Oropeza, Freddy E</creatorcontrib><creatorcontrib>Zheng, Qi</creatorcontrib><creatorcontrib>Einert, Marcus</creatorcontrib><creatorcontrib>Tian, Chuanmu</creatorcontrib><creatorcontrib>Maheu, Clément</creatorcontrib><creatorcontrib>Lv, Kangle</creatorcontrib><creatorcontrib>Hofmann, Jan P</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaofeng</au><au>Oropeza, Freddy E</au><au>Zheng, Qi</au><au>Einert, Marcus</au><au>Tian, Chuanmu</au><au>Maheu, Clément</au><au>Lv, Kangle</au><au>Hofmann, Jan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4</atitle><jtitle>Sustainable energy &amp; fuels</jtitle><date>2023-06-13</date><risdate>2023</risdate><volume>7</volume><issue>12</issue><spage>2923</spage><epage>2933</epage><pages>2923-2933</pages><eissn>2398-4902</eissn><abstract>The understanding of interfacial charge transfer processes is vital to the design of efficient photoanodes in photoelectrochemical (PEC) water splitting. Bismuth vanadate (BiVO4) is a promising photoanode material to drive the oxygen evolution reaction (OER). However, intrinsic BiVO4 suffers from a slow charge carrier mobility and sluggish OER kinetics, which gives rise to a high charge carrier recombination rate and unsatisfactory photoelectrochemical performance. Although the impact of metal doping of BiVO4 in the field of photocatalysis and photoelectrochemistry has been investigated in literature, a detailed understanding of the interfacial charge carrier dynamics in dependence of surface configuration is still required for further PEC device optimization. In this work, BiVO4 film samples were prepared by a modified metal organic precursor decomposition method. Effects of molybdenum (Mo) doping on the photocurrent density, electrochemical impedance spectra and interfacial charge transfer kinetics of BiVO4 were investigated. Our results indicate: (1) interfacial charge transfer resistances (Rct) of BiVO4 in 0.1 M phosphate buffer solution decrease 2 to 3 orders of magnitude under illumination. (2) Intensity of the photocurrent is predominantly limited by Rct, rather than the semiconductor bulk resistance (Rbulk). (3) Mo doping does not only increase photovoltage, but also obviously decreases Rct. (4) Compared to pristine BiVO4, Mo doping leads to an enhancement of photocurrent density at 1.23 V vs. RHE to 25.3 μA cm−2, i.e., by a factor 2.7.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3se00061c</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2398-4902
ispartof Sustainable energy & fuels, 2023-06, Vol.7 (12), p.2923-2933
issn 2398-4902
language eng
recordid cdi_proquest_journals_2825148187
source Royal Society Of Chemistry Journals 2008-
subjects Bismuth oxides
Buffer solutions
Carrier mobility
Carrier recombination
Charge transfer
Current carriers
Density
Doping
Electrochemistry
Kinetics
Molybdenum
Optimization
Oxidation
Oxygen evolution reactions
Photoelectric effect
Photoelectric emission
Photoelectrochemistry
Recombination
Vanadate
Vanadates
Water splitting
title Influence of Mo doping on interfacial charge carrier dynamics in photoelectrochemical water oxidation on BiVO4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Mo%20doping%20on%20interfacial%20charge%20carrier%20dynamics%20in%20photoelectrochemical%20water%20oxidation%20on%20BiVO4&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Wu,%20Xiaofeng&rft.date=2023-06-13&rft.volume=7&rft.issue=12&rft.spage=2923&rft.epage=2933&rft.pages=2923-2933&rft.eissn=2398-4902&rft_id=info:doi/10.1039/d3se00061c&rft_dat=%3Cproquest%3E2825148187%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825148187&rft_id=info:pmid/&rfr_iscdi=true