Silicon chambers for enhanced incubation and imaging of microfluidic droplets
Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and me...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2023-06, Vol.23 (12), p.2854-2865 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2865 |
---|---|
container_issue | 12 |
container_start_page | 2854 |
container_title | Lab on a chip |
container_volume | 23 |
creator | Lobato-Dauzier, Nicolas Deteix, Robin Gines, Guillaume Baccouche, Alexandre Hapsianto, Benediktus Nixon Okumura, Shu Mariette, Guilhem Belharet, Djaffar Queste, Samuel Jalabert, Laurent Denoual, Matthieu Rondelez, Yannick Toshiyoshi, Hiroshi Fujita, Hiroyuki Kim, Soo Hyeon Fujii, Teruo Genot, Anthony J |
description | Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers. Si chambers pack droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. We use the mechanical and optical benefits of Si chambers to image 1 million of droplets from a multiplexed digital assay - with an acquisition rate similar to the best in-line methods. Lastly, we demonstrate their applicability with a demanding assay that maps the thermal dependence of Michaelis-Menten constants with an array of 150 000 droplets. The design of the Si chambers is streamlined to avoid complicated fabrication and improve reproducibility, which makes Si a complementary material to PDMS in the toolbox of droplet microfluidics.
We introduce Si chambers that pack microfluidic droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. |
doi_str_mv | 10.1039/d2lc01143c |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2825109334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825109334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-dacbf94151fb6ddc7a9ae6e90b2f7bbd20182ae17d3188c80effc3594cbad6383</originalsourceid><addsrcrecordid>eNpd0UlLAzEUB_AgitXqxbsy4EWFal6SWXKUukLFg3oesrYpM5OadAS_vanVCp6y_Xi8lz9CR4AvAVN-pUmjMACjagvtASvpCEPFtzd7Xg7QfoxzjCFnRbWLBrQkeY6B7aGnF9c45btMzUQrTYiZ9SEz3Ux0yujMdaqXYukSEF06tmLqumnmbdY6FbxteqedynTwi8Ys4wHasaKJ5vBnHaK3u9vX8cNo8nz_OL6ejBQtYTnSQknLGeRgZaG1KgUXpjAcS2JLKTVJ_RNhoNQUqkpV2FiraM6ZkkIXtKJDdL6uOxNNvQiprfBZe-Hqh-tJvbrDjPCS5_kHJHu2tovg33sTl3XrojJNIzrj-1iTigBlwAue6Ok_Ovd96NIkK5UD5pSypC7WKn1AjMHYTQeA61Ug9Q2ZjL8DGSd88lOyl63RG_qbQALHaxCi2rz-JUq_AL08jvI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825109334</pqid></control><display><type>article</type><title>Silicon chambers for enhanced incubation and imaging of microfluidic droplets</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lobato-Dauzier, Nicolas ; Deteix, Robin ; Gines, Guillaume ; Baccouche, Alexandre ; Hapsianto, Benediktus Nixon ; Okumura, Shu ; Mariette, Guilhem ; Belharet, Djaffar ; Queste, Samuel ; Jalabert, Laurent ; Denoual, Matthieu ; Rondelez, Yannick ; Toshiyoshi, Hiroshi ; Fujita, Hiroyuki ; Kim, Soo Hyeon ; Fujii, Teruo ; Genot, Anthony J</creator><creatorcontrib>Lobato-Dauzier, Nicolas ; Deteix, Robin ; Gines, Guillaume ; Baccouche, Alexandre ; Hapsianto, Benediktus Nixon ; Okumura, Shu ; Mariette, Guilhem ; Belharet, Djaffar ; Queste, Samuel ; Jalabert, Laurent ; Denoual, Matthieu ; Rondelez, Yannick ; Toshiyoshi, Hiroshi ; Fujita, Hiroyuki ; Kim, Soo Hyeon ; Fujii, Teruo ; Genot, Anthony J</creatorcontrib><description>Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers. Si chambers pack droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. We use the mechanical and optical benefits of Si chambers to image 1 million of droplets from a multiplexed digital assay - with an acquisition rate similar to the best in-line methods. Lastly, we demonstrate their applicability with a demanding assay that maps the thermal dependence of Michaelis-Menten constants with an array of 150 000 droplets. The design of the Si chambers is streamlined to avoid complicated fabrication and improve reproducibility, which makes Si a complementary material to PDMS in the toolbox of droplet microfluidics.
We introduce Si chambers that pack microfluidic droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d2lc01143c</identifier><identifier>PMID: 37255014</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Assaying ; Chambers ; Digital imaging ; Droplets ; Engineering Sciences ; Mechanical properties ; Microfluidics ; Optical properties ; Physical sciences ; Silicon ; Temperature distribution ; Thermodynamic properties</subject><ispartof>Lab on a chip, 2023-06, Vol.23 (12), p.2854-2865</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-dacbf94151fb6ddc7a9ae6e90b2f7bbd20182ae17d3188c80effc3594cbad6383</citedby><cites>FETCH-LOGICAL-c371t-dacbf94151fb6ddc7a9ae6e90b2f7bbd20182ae17d3188c80effc3594cbad6383</cites><orcidid>0000-0001-9842-9523 ; 0000-0001-7535-7432 ; 0000-0001-7529-6238 ; 0000-0002-2565-476X ; 0000-0003-1012-3250 ; 0009-0000-5476-9585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37255014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04297955$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lobato-Dauzier, Nicolas</creatorcontrib><creatorcontrib>Deteix, Robin</creatorcontrib><creatorcontrib>Gines, Guillaume</creatorcontrib><creatorcontrib>Baccouche, Alexandre</creatorcontrib><creatorcontrib>Hapsianto, Benediktus Nixon</creatorcontrib><creatorcontrib>Okumura, Shu</creatorcontrib><creatorcontrib>Mariette, Guilhem</creatorcontrib><creatorcontrib>Belharet, Djaffar</creatorcontrib><creatorcontrib>Queste, Samuel</creatorcontrib><creatorcontrib>Jalabert, Laurent</creatorcontrib><creatorcontrib>Denoual, Matthieu</creatorcontrib><creatorcontrib>Rondelez, Yannick</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><creatorcontrib>Fujita, Hiroyuki</creatorcontrib><creatorcontrib>Kim, Soo Hyeon</creatorcontrib><creatorcontrib>Fujii, Teruo</creatorcontrib><creatorcontrib>Genot, Anthony J</creatorcontrib><title>Silicon chambers for enhanced incubation and imaging of microfluidic droplets</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers. Si chambers pack droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. We use the mechanical and optical benefits of Si chambers to image 1 million of droplets from a multiplexed digital assay - with an acquisition rate similar to the best in-line methods. Lastly, we demonstrate their applicability with a demanding assay that maps the thermal dependence of Michaelis-Menten constants with an array of 150 000 droplets. The design of the Si chambers is streamlined to avoid complicated fabrication and improve reproducibility, which makes Si a complementary material to PDMS in the toolbox of droplet microfluidics.
We introduce Si chambers that pack microfluidic droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets.</description><subject>Assaying</subject><subject>Chambers</subject><subject>Digital imaging</subject><subject>Droplets</subject><subject>Engineering Sciences</subject><subject>Mechanical properties</subject><subject>Microfluidics</subject><subject>Optical properties</subject><subject>Physical sciences</subject><subject>Silicon</subject><subject>Temperature distribution</subject><subject>Thermodynamic properties</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0UlLAzEUB_AgitXqxbsy4EWFal6SWXKUukLFg3oesrYpM5OadAS_vanVCp6y_Xi8lz9CR4AvAVN-pUmjMACjagvtASvpCEPFtzd7Xg7QfoxzjCFnRbWLBrQkeY6B7aGnF9c45btMzUQrTYiZ9SEz3Ux0yujMdaqXYukSEF06tmLqumnmbdY6FbxteqedynTwi8Ys4wHasaKJ5vBnHaK3u9vX8cNo8nz_OL6ejBQtYTnSQknLGeRgZaG1KgUXpjAcS2JLKTVJ_RNhoNQUqkpV2FiraM6ZkkIXtKJDdL6uOxNNvQiprfBZe-Hqh-tJvbrDjPCS5_kHJHu2tovg33sTl3XrojJNIzrj-1iTigBlwAue6Ok_Ovd96NIkK5UD5pSypC7WKn1AjMHYTQeA61Ug9Q2ZjL8DGSd88lOyl63RG_qbQALHaxCi2rz-JUq_AL08jvI</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Lobato-Dauzier, Nicolas</creator><creator>Deteix, Robin</creator><creator>Gines, Guillaume</creator><creator>Baccouche, Alexandre</creator><creator>Hapsianto, Benediktus Nixon</creator><creator>Okumura, Shu</creator><creator>Mariette, Guilhem</creator><creator>Belharet, Djaffar</creator><creator>Queste, Samuel</creator><creator>Jalabert, Laurent</creator><creator>Denoual, Matthieu</creator><creator>Rondelez, Yannick</creator><creator>Toshiyoshi, Hiroshi</creator><creator>Fujita, Hiroyuki</creator><creator>Kim, Soo Hyeon</creator><creator>Fujii, Teruo</creator><creator>Genot, Anthony J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9842-9523</orcidid><orcidid>https://orcid.org/0000-0001-7535-7432</orcidid><orcidid>https://orcid.org/0000-0001-7529-6238</orcidid><orcidid>https://orcid.org/0000-0002-2565-476X</orcidid><orcidid>https://orcid.org/0000-0003-1012-3250</orcidid><orcidid>https://orcid.org/0009-0000-5476-9585</orcidid></search><sort><creationdate>20230613</creationdate><title>Silicon chambers for enhanced incubation and imaging of microfluidic droplets</title><author>Lobato-Dauzier, Nicolas ; Deteix, Robin ; Gines, Guillaume ; Baccouche, Alexandre ; Hapsianto, Benediktus Nixon ; Okumura, Shu ; Mariette, Guilhem ; Belharet, Djaffar ; Queste, Samuel ; Jalabert, Laurent ; Denoual, Matthieu ; Rondelez, Yannick ; Toshiyoshi, Hiroshi ; Fujita, Hiroyuki ; Kim, Soo Hyeon ; Fujii, Teruo ; Genot, Anthony J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-dacbf94151fb6ddc7a9ae6e90b2f7bbd20182ae17d3188c80effc3594cbad6383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Assaying</topic><topic>Chambers</topic><topic>Digital imaging</topic><topic>Droplets</topic><topic>Engineering Sciences</topic><topic>Mechanical properties</topic><topic>Microfluidics</topic><topic>Optical properties</topic><topic>Physical sciences</topic><topic>Silicon</topic><topic>Temperature distribution</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobato-Dauzier, Nicolas</creatorcontrib><creatorcontrib>Deteix, Robin</creatorcontrib><creatorcontrib>Gines, Guillaume</creatorcontrib><creatorcontrib>Baccouche, Alexandre</creatorcontrib><creatorcontrib>Hapsianto, Benediktus Nixon</creatorcontrib><creatorcontrib>Okumura, Shu</creatorcontrib><creatorcontrib>Mariette, Guilhem</creatorcontrib><creatorcontrib>Belharet, Djaffar</creatorcontrib><creatorcontrib>Queste, Samuel</creatorcontrib><creatorcontrib>Jalabert, Laurent</creatorcontrib><creatorcontrib>Denoual, Matthieu</creatorcontrib><creatorcontrib>Rondelez, Yannick</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><creatorcontrib>Fujita, Hiroyuki</creatorcontrib><creatorcontrib>Kim, Soo Hyeon</creatorcontrib><creatorcontrib>Fujii, Teruo</creatorcontrib><creatorcontrib>Genot, Anthony J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobato-Dauzier, Nicolas</au><au>Deteix, Robin</au><au>Gines, Guillaume</au><au>Baccouche, Alexandre</au><au>Hapsianto, Benediktus Nixon</au><au>Okumura, Shu</au><au>Mariette, Guilhem</au><au>Belharet, Djaffar</au><au>Queste, Samuel</au><au>Jalabert, Laurent</au><au>Denoual, Matthieu</au><au>Rondelez, Yannick</au><au>Toshiyoshi, Hiroshi</au><au>Fujita, Hiroyuki</au><au>Kim, Soo Hyeon</au><au>Fujii, Teruo</au><au>Genot, Anthony J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon chambers for enhanced incubation and imaging of microfluidic droplets</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2023-06-13</date><risdate>2023</risdate><volume>23</volume><issue>12</issue><spage>2854</spage><epage>2865</epage><pages>2854-2865</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Droplet microfluidics has become a powerful tool in life sciences, underlying digital assays, single-cell sequencing or directed evolution, and it is making foray in physical sciences as well. Imaging and incubation of droplets are crucial, yet they are encumbered by the poor optical, thermal and mechanical properties of PDMS, a material commonly used in microfluidics labs. Here we show that Si is an ideal material for droplet chambers. Si chambers pack droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets. We use the mechanical and optical benefits of Si chambers to image 1 million of droplets from a multiplexed digital assay - with an acquisition rate similar to the best in-line methods. Lastly, we demonstrate their applicability with a demanding assay that maps the thermal dependence of Michaelis-Menten constants with an array of 150 000 droplets. The design of the Si chambers is streamlined to avoid complicated fabrication and improve reproducibility, which makes Si a complementary material to PDMS in the toolbox of droplet microfluidics.
We introduce Si chambers that pack microfluidic droplets in a crystalline and immobile monolayer, are immune to evaporation or sagging, boost the number of collected photons, and tightly control the temperature field sensed by droplets.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37255014</pmid><doi>10.1039/d2lc01143c</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9842-9523</orcidid><orcidid>https://orcid.org/0000-0001-7535-7432</orcidid><orcidid>https://orcid.org/0000-0001-7529-6238</orcidid><orcidid>https://orcid.org/0000-0002-2565-476X</orcidid><orcidid>https://orcid.org/0000-0003-1012-3250</orcidid><orcidid>https://orcid.org/0009-0000-5476-9585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2023-06, Vol.23 (12), p.2854-2865 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_journals_2825109334 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Assaying Chambers Digital imaging Droplets Engineering Sciences Mechanical properties Microfluidics Optical properties Physical sciences Silicon Temperature distribution Thermodynamic properties |
title | Silicon chambers for enhanced incubation and imaging of microfluidic droplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20chambers%20for%20enhanced%20incubation%20and%20imaging%20of%20microfluidic%20droplets&rft.jtitle=Lab%20on%20a%20chip&rft.au=Lobato-Dauzier,%20Nicolas&rft.date=2023-06-13&rft.volume=23&rft.issue=12&rft.spage=2854&rft.epage=2865&rft.pages=2854-2865&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d2lc01143c&rft_dat=%3Cproquest_hal_p%3E2825109334%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825109334&rft_id=info:pmid/37255014&rfr_iscdi=true |