Majority dynamics on sparse random graphs
Majority dynamics on a graph G$$ G $$ is a deterministic process such that every vertex updates its ±1$$ \pm 1 $$‐assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O'Donnell, Tamuz and Tan conjectured that, in the Erdős–Rényi random gr...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2023-08, Vol.63 (1), p.171-191 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Random structures & algorithms |
container_volume | 63 |
creator | Chakraborti, Debsoumya Han Kim, Jeong Lee, Joonkyung Tran, Tuan |
description | Majority dynamics on a graph G$$ G $$ is a deterministic process such that every vertex updates its ±1$$ \pm 1 $$‐assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O'Donnell, Tamuz and Tan conjectured that, in the Erdős–Rényi random graph G(n,p)$$ G\left(n,p\right) $$, the random initial ±1$$ \pm 1 $$‐assignment converges to a 99%$$ 99\% $$‐agreement with high probability whenever p=ω(1/n)$$ p=\omega \left(1/n\right) $$. This conjecture was first confirmed for p≥λn−1/2$$ p\ge \lambda {n}^{-1/2} $$ for a large constant λ$$ \lambda $$ by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, it was unknown whether the conjecture holds for p0 $$. |
doi_str_mv | 10.1002/rsa.21139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2825080316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825080316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2579-35efcd9ba49a51030a45b465961d4883324f27fe5e952bdccd05e38776bd8dc63</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8iseoi7XhsJ_ayqnhJRUg81pZjO5CoTYLdCuXvSQhbVnMX596RDiHXFJYUAFchmiVSytQJmVFQMkVO5emYOaZKMjwnFzHWAJAzZDOyeDJ1G6pDn7i-MfvKxqRtktiZEH0STOPaffIRTPcZL8lZaXbRX_3dOXm_u33bPKTb5_vHzXqbWhS5SpnwpXWqMFwZQYGB4aLgmVAZdVxKxpCXmJdeeCWwcNY6EJ7JPM8KJ53N2JzcTLtdaL-OPh503R5DM7zUKFGABEZHajFRNrQxBl_qLlR7E3pNQY8m9GBC_5oY2NXEflc73_8P6pfX9dT4AdwbXfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825080316</pqid></control><display><type>article</type><title>Majority dynamics on sparse random graphs</title><source>Wiley-Blackwell Journals</source><creator>Chakraborti, Debsoumya ; Han Kim, Jeong ; Lee, Joonkyung ; Tran, Tuan</creator><creatorcontrib>Chakraborti, Debsoumya ; Han Kim, Jeong ; Lee, Joonkyung ; Tran, Tuan</creatorcontrib><description>Majority dynamics on a graph G$$ G $$ is a deterministic process such that every vertex updates its ±1$$ \pm 1 $$‐assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O'Donnell, Tamuz and Tan conjectured that, in the Erdős–Rényi random graph G(n,p)$$ G\left(n,p\right) $$, the random initial ±1$$ \pm 1 $$‐assignment converges to a 99%$$ 99\% $$‐agreement with high probability whenever p=ω(1/n)$$ p=\omega \left(1/n\right) $$. This conjecture was first confirmed for p≥λn−1/2$$ p\ge \lambda {n}^{-1/2} $$ for a large constant λ$$ \lambda $$ by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, it was unknown whether the conjecture holds for p<λn−1/2$$ p<\lambda {n}^{-1/2} $$. We break this Ω(n−1/2)$$ \Omega \left({n}^{-1/2}\right) $$‐barrier by proving the conjecture for sparser random graphs G(n,p)$$ G\left(n,p\right) $$, where λ′n−3/5logn≤p≤λn−1/2$$ {\lambda}^{\prime }{n}^{-3/5}\log n\le p\le \lambda {n}^{-1/2} $$ with a large constant λ′>0$$ {\lambda}^{\prime }>0 $$.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21139</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Erdős–Rényi random graph ; Graphs ; majority dynamics</subject><ispartof>Random structures & algorithms, 2023-08, Vol.63 (1), p.171-191</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2579-35efcd9ba49a51030a45b465961d4883324f27fe5e952bdccd05e38776bd8dc63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.21139$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.21139$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chakraborti, Debsoumya</creatorcontrib><creatorcontrib>Han Kim, Jeong</creatorcontrib><creatorcontrib>Lee, Joonkyung</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><title>Majority dynamics on sparse random graphs</title><title>Random structures & algorithms</title><description>Majority dynamics on a graph G$$ G $$ is a deterministic process such that every vertex updates its ±1$$ \pm 1 $$‐assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O'Donnell, Tamuz and Tan conjectured that, in the Erdős–Rényi random graph G(n,p)$$ G\left(n,p\right) $$, the random initial ±1$$ \pm 1 $$‐assignment converges to a 99%$$ 99\% $$‐agreement with high probability whenever p=ω(1/n)$$ p=\omega \left(1/n\right) $$. This conjecture was first confirmed for p≥λn−1/2$$ p\ge \lambda {n}^{-1/2} $$ for a large constant λ$$ \lambda $$ by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, it was unknown whether the conjecture holds for p<λn−1/2$$ p<\lambda {n}^{-1/2} $$. We break this Ω(n−1/2)$$ \Omega \left({n}^{-1/2}\right) $$‐barrier by proving the conjecture for sparser random graphs G(n,p)$$ G\left(n,p\right) $$, where λ′n−3/5logn≤p≤λn−1/2$$ {\lambda}^{\prime }{n}^{-3/5}\log n\le p\le \lambda {n}^{-1/2} $$ with a large constant λ′>0$$ {\lambda}^{\prime }>0 $$.</description><subject>Erdős–Rényi random graph</subject><subject>Graphs</subject><subject>majority dynamics</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8iseoi7XhsJ_ayqnhJRUg81pZjO5CoTYLdCuXvSQhbVnMX596RDiHXFJYUAFchmiVSytQJmVFQMkVO5emYOaZKMjwnFzHWAJAzZDOyeDJ1G6pDn7i-MfvKxqRtktiZEH0STOPaffIRTPcZL8lZaXbRX_3dOXm_u33bPKTb5_vHzXqbWhS5SpnwpXWqMFwZQYGB4aLgmVAZdVxKxpCXmJdeeCWwcNY6EJ7JPM8KJ53N2JzcTLtdaL-OPh503R5DM7zUKFGABEZHajFRNrQxBl_qLlR7E3pNQY8m9GBC_5oY2NXEflc73_8P6pfX9dT4AdwbXfw</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Chakraborti, Debsoumya</creator><creator>Han Kim, Jeong</creator><creator>Lee, Joonkyung</creator><creator>Tran, Tuan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202308</creationdate><title>Majority dynamics on sparse random graphs</title><author>Chakraborti, Debsoumya ; Han Kim, Jeong ; Lee, Joonkyung ; Tran, Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2579-35efcd9ba49a51030a45b465961d4883324f27fe5e952bdccd05e38776bd8dc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Erdős–Rényi random graph</topic><topic>Graphs</topic><topic>majority dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborti, Debsoumya</creatorcontrib><creatorcontrib>Han Kim, Jeong</creatorcontrib><creatorcontrib>Lee, Joonkyung</creatorcontrib><creatorcontrib>Tran, Tuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborti, Debsoumya</au><au>Han Kim, Jeong</au><au>Lee, Joonkyung</au><au>Tran, Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Majority dynamics on sparse random graphs</atitle><jtitle>Random structures & algorithms</jtitle><date>2023-08</date><risdate>2023</risdate><volume>63</volume><issue>1</issue><spage>171</spage><epage>191</epage><pages>171-191</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>Majority dynamics on a graph G$$ G $$ is a deterministic process such that every vertex updates its ±1$$ \pm 1 $$‐assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O'Donnell, Tamuz and Tan conjectured that, in the Erdős–Rényi random graph G(n,p)$$ G\left(n,p\right) $$, the random initial ±1$$ \pm 1 $$‐assignment converges to a 99%$$ 99\% $$‐agreement with high probability whenever p=ω(1/n)$$ p=\omega \left(1/n\right) $$. This conjecture was first confirmed for p≥λn−1/2$$ p\ge \lambda {n}^{-1/2} $$ for a large constant λ$$ \lambda $$ by Fountoulakis, Kang and Makai. Although this result has been reproved recently by Tran and Vu and by Berkowitz and Devlin, it was unknown whether the conjecture holds for p<λn−1/2$$ p<\lambda {n}^{-1/2} $$. We break this Ω(n−1/2)$$ \Omega \left({n}^{-1/2}\right) $$‐barrier by proving the conjecture for sparser random graphs G(n,p)$$ G\left(n,p\right) $$, where λ′n−3/5logn≤p≤λn−1/2$$ {\lambda}^{\prime }{n}^{-3/5}\log n\le p\le \lambda {n}^{-1/2} $$ with a large constant λ′>0$$ {\lambda}^{\prime }>0 $$.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.21139</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2023-08, Vol.63 (1), p.171-191 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_2825080316 |
source | Wiley-Blackwell Journals |
subjects | Erdős–Rényi random graph Graphs majority dynamics |
title | Majority dynamics on sparse random graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Majority%20dynamics%20on%20sparse%20random%20graphs&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Chakraborti,%20Debsoumya&rft.date=2023-08&rft.volume=63&rft.issue=1&rft.spage=171&rft.epage=191&rft.pages=171-191&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21139&rft_dat=%3Cproquest_cross%3E2825080316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825080316&rft_id=info:pmid/&rfr_iscdi=true |