Highly Oxidation‐Resistant and Self‐Healable MXene‐Based Hydrogels for Wearable Strain Sensor

Very recently, MXene‐based wearable hydrogels have emerged as promising candidates for epidermal sensors due to their tissue‐like softness and unique electrical and mechanical properties. However, it remains a challenge to achieve MXene‐based hydrogels with reliable sensing performance and prolonged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-06, Vol.33 (24), p.n/a
Hauptverfasser: Chae, Ari, Murali, G., Lee, Seul‐Yi, Gwak, Jeonghwan, Kim, Seon Joon, Jeong, Yong Jin, Kang, Hansol, Park, Seongmin, Lee, Albert S., Koh, Dong‐Yeun, In, Insik, Park, Soo‐Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 33
creator Chae, Ari
Murali, G.
Lee, Seul‐Yi
Gwak, Jeonghwan
Kim, Seon Joon
Jeong, Yong Jin
Kang, Hansol
Park, Seongmin
Lee, Albert S.
Koh, Dong‐Yeun
In, Insik
Park, Soo‐Jin
description Very recently, MXene‐based wearable hydrogels have emerged as promising candidates for epidermal sensors due to their tissue‐like softness and unique electrical and mechanical properties. However, it remains a challenge to achieve MXene‐based hydrogels with reliable sensing performance and prolonged service life, because MXene inevitably oxidizes in water‐containing system of the hydrogels. Herein, catechol‐functionalized poly(vinyl alcohol) (PVA‐CA)‐based hydrogels is proposed to inhibit the oxidation of MXene, leading to rapid self‐healing and superior strain sensing behaviors. Sufficient interaction of hydrophobic catechol groups with the MXene surface reduces the oxidation‐accessible sites in the MXene for reaction with water and eventually suppresses the oxidation of MXene in the hydrogel. Furthermore, the PVA‐CA‐MXene hydrogel is demonstrated for use as a strain sensor for real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor can be accurately classified using deep learning models. This study provides an avenue for the synthesis of oxidation‐resistant MXene‐based catechol‐grafted poly (vinyl alcohol) hydrogels (PVA‐CA‐MXene hydrogel) with prolonged service life intended for strain sensors in real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor are further accurately classified using deep learning models.
doi_str_mv 10.1002/adfm.202213382
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824587799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824587799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-9b1db335cbd51b1d90d13a8c7eeb55648caac0f46e087d73f93b7f2ad92f85c23</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRsFa3rgOuU-cnyUyWtVojtAhWsbthMnOnpqRJnUnR7HwEn9EnMbVSl67ux-Wce-FD6JzgAcGYXipjVwOKKSWMCXqAeiQhScgwFYf7TObH6MT7JcaEcxb1kM6KxUvZBvfvhVFNUVdfH58P4AvfqKoJVGWCGZS2W2agSpWXEEznUEG3uFIeTJC1xtULKH1gaxc8g3I_0Kxxqqg6t_K1O0VHVpUezn5nHz2Nbx5HWTi5v70bDSehZoTTMM2JyRmLdW5i0uUUG8KU0Bwgj-MkElopjW2UABbccGZTlnNLlUmpFbGmrI8udnfXrn7dgG_kst64qnspqaBRLDhP044a7Cjtau8dWLl2xUq5VhIst0XKbZFyX2QnpDvhrSih_YeWw-vx9M_9Blhmewg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824587799</pqid></control><display><type>article</type><title>Highly Oxidation‐Resistant and Self‐Healable MXene‐Based Hydrogels for Wearable Strain Sensor</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chae, Ari ; Murali, G. ; Lee, Seul‐Yi ; Gwak, Jeonghwan ; Kim, Seon Joon ; Jeong, Yong Jin ; Kang, Hansol ; Park, Seongmin ; Lee, Albert S. ; Koh, Dong‐Yeun ; In, Insik ; Park, Soo‐Jin</creator><creatorcontrib>Chae, Ari ; Murali, G. ; Lee, Seul‐Yi ; Gwak, Jeonghwan ; Kim, Seon Joon ; Jeong, Yong Jin ; Kang, Hansol ; Park, Seongmin ; Lee, Albert S. ; Koh, Dong‐Yeun ; In, Insik ; Park, Soo‐Jin</creatorcontrib><description>Very recently, MXene‐based wearable hydrogels have emerged as promising candidates for epidermal sensors due to their tissue‐like softness and unique electrical and mechanical properties. However, it remains a challenge to achieve MXene‐based hydrogels with reliable sensing performance and prolonged service life, because MXene inevitably oxidizes in water‐containing system of the hydrogels. Herein, catechol‐functionalized poly(vinyl alcohol) (PVA‐CA)‐based hydrogels is proposed to inhibit the oxidation of MXene, leading to rapid self‐healing and superior strain sensing behaviors. Sufficient interaction of hydrophobic catechol groups with the MXene surface reduces the oxidation‐accessible sites in the MXene for reaction with water and eventually suppresses the oxidation of MXene in the hydrogel. Furthermore, the PVA‐CA‐MXene hydrogel is demonstrated for use as a strain sensor for real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor can be accurately classified using deep learning models. This study provides an avenue for the synthesis of oxidation‐resistant MXene‐based catechol‐grafted poly (vinyl alcohol) hydrogels (PVA‐CA‐MXene hydrogel) with prolonged service life intended for strain sensors in real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor are further accurately classified using deep learning models.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202213382</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Catechol ; deep learning ; Handwriting ; Hydrogels ; Materials science ; Mechanical properties ; MXenes ; oxidation ; Oxidation resistance ; poly(vinyl alcohol) ; Polyvinyl alcohol ; sensors ; Service life ; Softness ; Wearable technology</subject><ispartof>Advanced functional materials, 2023-06, Vol.33 (24), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-9b1db335cbd51b1d90d13a8c7eeb55648caac0f46e087d73f93b7f2ad92f85c23</citedby><cites>FETCH-LOGICAL-c3172-9b1db335cbd51b1d90d13a8c7eeb55648caac0f46e087d73f93b7f2ad92f85c23</cites><orcidid>0000-0002-6350-6135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202213382$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202213382$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chae, Ari</creatorcontrib><creatorcontrib>Murali, G.</creatorcontrib><creatorcontrib>Lee, Seul‐Yi</creatorcontrib><creatorcontrib>Gwak, Jeonghwan</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><creatorcontrib>Jeong, Yong Jin</creatorcontrib><creatorcontrib>Kang, Hansol</creatorcontrib><creatorcontrib>Park, Seongmin</creatorcontrib><creatorcontrib>Lee, Albert S.</creatorcontrib><creatorcontrib>Koh, Dong‐Yeun</creatorcontrib><creatorcontrib>In, Insik</creatorcontrib><creatorcontrib>Park, Soo‐Jin</creatorcontrib><title>Highly Oxidation‐Resistant and Self‐Healable MXene‐Based Hydrogels for Wearable Strain Sensor</title><title>Advanced functional materials</title><description>Very recently, MXene‐based wearable hydrogels have emerged as promising candidates for epidermal sensors due to their tissue‐like softness and unique electrical and mechanical properties. However, it remains a challenge to achieve MXene‐based hydrogels with reliable sensing performance and prolonged service life, because MXene inevitably oxidizes in water‐containing system of the hydrogels. Herein, catechol‐functionalized poly(vinyl alcohol) (PVA‐CA)‐based hydrogels is proposed to inhibit the oxidation of MXene, leading to rapid self‐healing and superior strain sensing behaviors. Sufficient interaction of hydrophobic catechol groups with the MXene surface reduces the oxidation‐accessible sites in the MXene for reaction with water and eventually suppresses the oxidation of MXene in the hydrogel. Furthermore, the PVA‐CA‐MXene hydrogel is demonstrated for use as a strain sensor for real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor can be accurately classified using deep learning models. This study provides an avenue for the synthesis of oxidation‐resistant MXene‐based catechol‐grafted poly (vinyl alcohol) hydrogels (PVA‐CA‐MXene hydrogel) with prolonged service life intended for strain sensors in real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor are further accurately classified using deep learning models.</description><subject>Catechol</subject><subject>deep learning</subject><subject>Handwriting</subject><subject>Hydrogels</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>MXenes</subject><subject>oxidation</subject><subject>Oxidation resistance</subject><subject>poly(vinyl alcohol)</subject><subject>Polyvinyl alcohol</subject><subject>sensors</subject><subject>Service life</subject><subject>Softness</subject><subject>Wearable technology</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AURgdRsFa3rgOuU-cnyUyWtVojtAhWsbthMnOnpqRJnUnR7HwEn9EnMbVSl67ux-Wce-FD6JzgAcGYXipjVwOKKSWMCXqAeiQhScgwFYf7TObH6MT7JcaEcxb1kM6KxUvZBvfvhVFNUVdfH58P4AvfqKoJVGWCGZS2W2agSpWXEEznUEG3uFIeTJC1xtULKH1gaxc8g3I_0Kxxqqg6t_K1O0VHVpUezn5nHz2Nbx5HWTi5v70bDSehZoTTMM2JyRmLdW5i0uUUG8KU0Bwgj-MkElopjW2UABbccGZTlnNLlUmpFbGmrI8udnfXrn7dgG_kst64qnspqaBRLDhP044a7Cjtau8dWLl2xUq5VhIst0XKbZFyX2QnpDvhrSih_YeWw-vx9M_9Blhmewg</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chae, Ari</creator><creator>Murali, G.</creator><creator>Lee, Seul‐Yi</creator><creator>Gwak, Jeonghwan</creator><creator>Kim, Seon Joon</creator><creator>Jeong, Yong Jin</creator><creator>Kang, Hansol</creator><creator>Park, Seongmin</creator><creator>Lee, Albert S.</creator><creator>Koh, Dong‐Yeun</creator><creator>In, Insik</creator><creator>Park, Soo‐Jin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6350-6135</orcidid></search><sort><creationdate>20230601</creationdate><title>Highly Oxidation‐Resistant and Self‐Healable MXene‐Based Hydrogels for Wearable Strain Sensor</title><author>Chae, Ari ; Murali, G. ; Lee, Seul‐Yi ; Gwak, Jeonghwan ; Kim, Seon Joon ; Jeong, Yong Jin ; Kang, Hansol ; Park, Seongmin ; Lee, Albert S. ; Koh, Dong‐Yeun ; In, Insik ; Park, Soo‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-9b1db335cbd51b1d90d13a8c7eeb55648caac0f46e087d73f93b7f2ad92f85c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catechol</topic><topic>deep learning</topic><topic>Handwriting</topic><topic>Hydrogels</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>MXenes</topic><topic>oxidation</topic><topic>Oxidation resistance</topic><topic>poly(vinyl alcohol)</topic><topic>Polyvinyl alcohol</topic><topic>sensors</topic><topic>Service life</topic><topic>Softness</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Ari</creatorcontrib><creatorcontrib>Murali, G.</creatorcontrib><creatorcontrib>Lee, Seul‐Yi</creatorcontrib><creatorcontrib>Gwak, Jeonghwan</creatorcontrib><creatorcontrib>Kim, Seon Joon</creatorcontrib><creatorcontrib>Jeong, Yong Jin</creatorcontrib><creatorcontrib>Kang, Hansol</creatorcontrib><creatorcontrib>Park, Seongmin</creatorcontrib><creatorcontrib>Lee, Albert S.</creatorcontrib><creatorcontrib>Koh, Dong‐Yeun</creatorcontrib><creatorcontrib>In, Insik</creatorcontrib><creatorcontrib>Park, Soo‐Jin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Ari</au><au>Murali, G.</au><au>Lee, Seul‐Yi</au><au>Gwak, Jeonghwan</au><au>Kim, Seon Joon</au><au>Jeong, Yong Jin</au><au>Kang, Hansol</au><au>Park, Seongmin</au><au>Lee, Albert S.</au><au>Koh, Dong‐Yeun</au><au>In, Insik</au><au>Park, Soo‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Oxidation‐Resistant and Self‐Healable MXene‐Based Hydrogels for Wearable Strain Sensor</atitle><jtitle>Advanced functional materials</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>33</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Very recently, MXene‐based wearable hydrogels have emerged as promising candidates for epidermal sensors due to their tissue‐like softness and unique electrical and mechanical properties. However, it remains a challenge to achieve MXene‐based hydrogels with reliable sensing performance and prolonged service life, because MXene inevitably oxidizes in water‐containing system of the hydrogels. Herein, catechol‐functionalized poly(vinyl alcohol) (PVA‐CA)‐based hydrogels is proposed to inhibit the oxidation of MXene, leading to rapid self‐healing and superior strain sensing behaviors. Sufficient interaction of hydrophobic catechol groups with the MXene surface reduces the oxidation‐accessible sites in the MXene for reaction with water and eventually suppresses the oxidation of MXene in the hydrogel. Furthermore, the PVA‐CA‐MXene hydrogel is demonstrated for use as a strain sensor for real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor can be accurately classified using deep learning models. This study provides an avenue for the synthesis of oxidation‐resistant MXene‐based catechol‐grafted poly (vinyl alcohol) hydrogels (PVA‐CA‐MXene hydrogel) with prolonged service life intended for strain sensors in real‐time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA‐CA‐MXene hydrogel sensor are further accurately classified using deep learning models.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202213382</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6350-6135</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-06, Vol.33 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2824587799
source Wiley Online Library Journals Frontfile Complete
subjects Catechol
deep learning
Handwriting
Hydrogels
Materials science
Mechanical properties
MXenes
oxidation
Oxidation resistance
poly(vinyl alcohol)
Polyvinyl alcohol
sensors
Service life
Softness
Wearable technology
title Highly Oxidation‐Resistant and Self‐Healable MXene‐Based Hydrogels for Wearable Strain Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Oxidation%E2%80%90Resistant%20and%20Self%E2%80%90Healable%20MXene%E2%80%90Based%20Hydrogels%20for%20Wearable%20Strain%20Sensor&rft.jtitle=Advanced%20functional%20materials&rft.au=Chae,%20Ari&rft.date=2023-06-01&rft.volume=33&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202213382&rft_dat=%3Cproquest_cross%3E2824587799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824587799&rft_id=info:pmid/&rfr_iscdi=true