Magnetoresistance of GaPAs and InSb whiskers

The magnetoresistance of GaP x As 1− x ( x  = 0.4) whiskers with a doping concentration of silicon in the range from the dielectric side of metal-insulated transition (MIT) (~ 10 17  cm −3 ) to its critical concentration ( N c  ~ 5 × 10 18  cm −3 ) at cryogenic temperatures of 4.2–77 K and magnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2023-07, Vol.13 (7), p.4701-4707
Hauptverfasser: Druzhinin, Anatoly, Ostrovskii, Igor, Khoverko, Yuriy, Liakh-Kaguy, Natalia, Chemerys, Dmytro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4707
container_issue 7
container_start_page 4701
container_title Applied nanoscience
container_volume 13
creator Druzhinin, Anatoly
Ostrovskii, Igor
Khoverko, Yuriy
Liakh-Kaguy, Natalia
Chemerys, Dmytro
description The magnetoresistance of GaP x As 1− x ( x  = 0.4) whiskers with a doping concentration of silicon in the range from the dielectric side of metal-insulated transition (MIT) (~ 10 17  cm −3 ) to its critical concentration ( N c  ~ 5 × 10 18  cm −3 ) at cryogenic temperatures of 4.2–77 K and magnetic field induction of 0–14 T was studied. A negative magnetic resistance (NMR) with a maximum value of 7% was found at a temperature of 4.2 K and a magnetic field of 4.5 T, which is dependent on magnetic field induction and current direction. The NMR absolute value reduces with increasing temperature was observed in the transverse and longitudinal magnetoresistance. The nature of the revealed NMR effect was discussed in the studied samples. A similar effect was observed in InSb whiskers. There are four possible reasons for the NMR effect in the GaP x As 1− x and InSb whiskers such as dimensional quantization, the magnetic ordering of electron spins or magnetic ordering due to uncontrolled magnetic dopant introduction and quantum interference of the electron wave function. The GaP x As 1− x whisker application as the temperature sensor was proposed due to the studied results of the temperature dependence of their conductivity.
doi_str_mv 10.1007/s13204-022-02596-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824497234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824497234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6e7c6d13f82abd0f89d9ba266785dcf5bf6435b26feaf7ec12486064c50e54003</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFr65OJl-7x1K0LVQU1HPIZpPaqtmabBH_vdEVvTkwzBzeD3gIOaVwQQHUZaIMgZeAmFfUssQDMkJaQykEVYe_P9THZJLSFvIIriQTI3J-Y9bB9V10aZN6E6wrOl_Mzd00FSa0xTLcN8X70yY9u5hOyJE3L8lNfu6YPF5fPcwW5ep2vpxNV6VFBX0pnbKypcxXaJoWfFW3dWNQSlWJ1nrReMmZaFB6Z7xyliKvJEhuBTjBAdiYnA25u9i97V3q9bbbx5ArNVbIea2Q8azCQWVjl1J0Xu_i5tXED01Bf4HRAxidwehvMBqziQ2mlMVh7eJf9D-uT3jlY7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824497234</pqid></control><display><type>article</type><title>Magnetoresistance of GaPAs and InSb whiskers</title><source>SpringerLink Journals</source><creator>Druzhinin, Anatoly ; Ostrovskii, Igor ; Khoverko, Yuriy ; Liakh-Kaguy, Natalia ; Chemerys, Dmytro</creator><creatorcontrib>Druzhinin, Anatoly ; Ostrovskii, Igor ; Khoverko, Yuriy ; Liakh-Kaguy, Natalia ; Chemerys, Dmytro</creatorcontrib><description>The magnetoresistance of GaP x As 1− x ( x  = 0.4) whiskers with a doping concentration of silicon in the range from the dielectric side of metal-insulated transition (MIT) (~ 10 17  cm −3 ) to its critical concentration ( N c  ~ 5 × 10 18  cm −3 ) at cryogenic temperatures of 4.2–77 K and magnetic field induction of 0–14 T was studied. A negative magnetic resistance (NMR) with a maximum value of 7% was found at a temperature of 4.2 K and a magnetic field of 4.5 T, which is dependent on magnetic field induction and current direction. The NMR absolute value reduces with increasing temperature was observed in the transverse and longitudinal magnetoresistance. The nature of the revealed NMR effect was discussed in the studied samples. A similar effect was observed in InSb whiskers. There are four possible reasons for the NMR effect in the GaP x As 1− x and InSb whiskers such as dimensional quantization, the magnetic ordering of electron spins or magnetic ordering due to uncontrolled magnetic dopant introduction and quantum interference of the electron wave function. The GaP x As 1− x whisker application as the temperature sensor was proposed due to the studied results of the temperature dependence of their conductivity.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-022-02596-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry and Materials Science ; Cryogenic temperature ; Electron spin ; Electrons ; Indium antimonide ; Intermetallic compounds ; Magnetic fields ; Magnetic induction ; Magnetoresistance ; Magnetoresistivity ; Materials Science ; Membrane Biology ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; NMR ; Nuclear magnetic resonance ; Original Article ; Temperature ; Temperature dependence ; Temperature sensors ; Wave functions</subject><ispartof>Applied nanoscience, 2023-07, Vol.13 (7), p.4701-4707</ispartof><rights>King Abdulaziz City for Science and Technology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6e7c6d13f82abd0f89d9ba266785dcf5bf6435b26feaf7ec12486064c50e54003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-022-02596-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-022-02596-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Druzhinin, Anatoly</creatorcontrib><creatorcontrib>Ostrovskii, Igor</creatorcontrib><creatorcontrib>Khoverko, Yuriy</creatorcontrib><creatorcontrib>Liakh-Kaguy, Natalia</creatorcontrib><creatorcontrib>Chemerys, Dmytro</creatorcontrib><title>Magnetoresistance of GaPAs and InSb whiskers</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>The magnetoresistance of GaP x As 1− x ( x  = 0.4) whiskers with a doping concentration of silicon in the range from the dielectric side of metal-insulated transition (MIT) (~ 10 17  cm −3 ) to its critical concentration ( N c  ~ 5 × 10 18  cm −3 ) at cryogenic temperatures of 4.2–77 K and magnetic field induction of 0–14 T was studied. A negative magnetic resistance (NMR) with a maximum value of 7% was found at a temperature of 4.2 K and a magnetic field of 4.5 T, which is dependent on magnetic field induction and current direction. The NMR absolute value reduces with increasing temperature was observed in the transverse and longitudinal magnetoresistance. The nature of the revealed NMR effect was discussed in the studied samples. A similar effect was observed in InSb whiskers. There are four possible reasons for the NMR effect in the GaP x As 1− x and InSb whiskers such as dimensional quantization, the magnetic ordering of electron spins or magnetic ordering due to uncontrolled magnetic dopant introduction and quantum interference of the electron wave function. The GaP x As 1− x whisker application as the temperature sensor was proposed due to the studied results of the temperature dependence of their conductivity.</description><subject>Chemistry and Materials Science</subject><subject>Cryogenic temperature</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Indium antimonide</subject><subject>Intermetallic compounds</subject><subject>Magnetic fields</subject><subject>Magnetic induction</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Materials Science</subject><subject>Membrane Biology</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Original Article</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature sensors</subject><subject>Wave functions</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKcFr65OJl-7x1K0LVQU1HPIZpPaqtmabBH_vdEVvTkwzBzeD3gIOaVwQQHUZaIMgZeAmFfUssQDMkJaQykEVYe_P9THZJLSFvIIriQTI3J-Y9bB9V10aZN6E6wrOl_Mzd00FSa0xTLcN8X70yY9u5hOyJE3L8lNfu6YPF5fPcwW5ep2vpxNV6VFBX0pnbKypcxXaJoWfFW3dWNQSlWJ1nrReMmZaFB6Z7xyliKvJEhuBTjBAdiYnA25u9i97V3q9bbbx5ArNVbIea2Q8azCQWVjl1J0Xu_i5tXED01Bf4HRAxidwehvMBqziQ2mlMVh7eJf9D-uT3jlY7c</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Druzhinin, Anatoly</creator><creator>Ostrovskii, Igor</creator><creator>Khoverko, Yuriy</creator><creator>Liakh-Kaguy, Natalia</creator><creator>Chemerys, Dmytro</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Magnetoresistance of GaPAs and InSb whiskers</title><author>Druzhinin, Anatoly ; Ostrovskii, Igor ; Khoverko, Yuriy ; Liakh-Kaguy, Natalia ; Chemerys, Dmytro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6e7c6d13f82abd0f89d9ba266785dcf5bf6435b26feaf7ec12486064c50e54003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry and Materials Science</topic><topic>Cryogenic temperature</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Indium antimonide</topic><topic>Intermetallic compounds</topic><topic>Magnetic fields</topic><topic>Magnetic induction</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Materials Science</topic><topic>Membrane Biology</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Original Article</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature sensors</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Druzhinin, Anatoly</creatorcontrib><creatorcontrib>Ostrovskii, Igor</creatorcontrib><creatorcontrib>Khoverko, Yuriy</creatorcontrib><creatorcontrib>Liakh-Kaguy, Natalia</creatorcontrib><creatorcontrib>Chemerys, Dmytro</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Druzhinin, Anatoly</au><au>Ostrovskii, Igor</au><au>Khoverko, Yuriy</au><au>Liakh-Kaguy, Natalia</au><au>Chemerys, Dmytro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoresistance of GaPAs and InSb whiskers</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>13</volume><issue>7</issue><spage>4701</spage><epage>4707</epage><pages>4701-4707</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>The magnetoresistance of GaP x As 1− x ( x  = 0.4) whiskers with a doping concentration of silicon in the range from the dielectric side of metal-insulated transition (MIT) (~ 10 17  cm −3 ) to its critical concentration ( N c  ~ 5 × 10 18  cm −3 ) at cryogenic temperatures of 4.2–77 K and magnetic field induction of 0–14 T was studied. A negative magnetic resistance (NMR) with a maximum value of 7% was found at a temperature of 4.2 K and a magnetic field of 4.5 T, which is dependent on magnetic field induction and current direction. The NMR absolute value reduces with increasing temperature was observed in the transverse and longitudinal magnetoresistance. The nature of the revealed NMR effect was discussed in the studied samples. A similar effect was observed in InSb whiskers. There are four possible reasons for the NMR effect in the GaP x As 1− x and InSb whiskers such as dimensional quantization, the magnetic ordering of electron spins or magnetic ordering due to uncontrolled magnetic dopant introduction and quantum interference of the electron wave function. The GaP x As 1− x whisker application as the temperature sensor was proposed due to the studied results of the temperature dependence of their conductivity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-022-02596-2</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5509
ispartof Applied nanoscience, 2023-07, Vol.13 (7), p.4701-4707
issn 2190-5509
2190-5517
language eng
recordid cdi_proquest_journals_2824497234
source SpringerLink Journals
subjects Chemistry and Materials Science
Cryogenic temperature
Electron spin
Electrons
Indium antimonide
Intermetallic compounds
Magnetic fields
Magnetic induction
Magnetoresistance
Magnetoresistivity
Materials Science
Membrane Biology
Nanochemistry
Nanotechnology
Nanotechnology and Microengineering
NMR
Nuclear magnetic resonance
Original Article
Temperature
Temperature dependence
Temperature sensors
Wave functions
title Magnetoresistance of GaPAs and InSb whiskers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoresistance%20of%20GaPAs%20and%20InSb%20whiskers&rft.jtitle=Applied%20nanoscience&rft.au=Druzhinin,%20Anatoly&rft.date=2023-07-01&rft.volume=13&rft.issue=7&rft.spage=4701&rft.epage=4707&rft.pages=4701-4707&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-022-02596-2&rft_dat=%3Cproquest_cross%3E2824497234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824497234&rft_id=info:pmid/&rfr_iscdi=true