Deviation from equidistance for one-dimensional sequences

For a finite sequence ( x i ) i = 1 N in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aequationes mathematicae 2023-08, Vol.97 (4), p.683-705
1. Verfasser: Weiß, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 705
container_issue 4
container_start_page 683
container_title Aequationes mathematicae
container_volume 97
creator Weiß, Christian
description For a finite sequence ( x i ) i = 1 N in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences.
doi_str_mv 10.1007/s00010-023-00958-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824337862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824337862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-52a5fa20415005ba033a85178b0cd6e84fc00d7739bf6e88778bfae4655a21293</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_AU8Bz6uzX8nmKPUTCl70vGySXUlps3UnlfrfOzWCN0_D8H5v5vEYuxRwLQCqGwQAARyk4gC1sXx_xGZCS-C2BnXMZged12D0KTtDXNEmq0rNWH0XPns_9mkoYk6bInzs-q7H0Q9tKGLKRRoC7_pNGJAYvy6QiEAinrOT6NcYLn7nnL093L8unvjy5fF5cbvkrRJ65EZ6E70ELQyAaTwo5a0RlW2g7cpgdWwBOspSN5FWW5ESfdClMV4KWas5u5rubnOi1zi6VdplioJOWqmVqmwpiZIT1eaEmEN029xvfP5yAtyhIjdV5Kgi91OR25NJTSYkeHgP-e_0P65vqslo3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824337862</pqid></control><display><type>article</type><title>Deviation from equidistance for one-dimensional sequences</title><source>SpringerLink</source><creator>Weiß, Christian</creator><creatorcontrib>Weiß, Christian</creatorcontrib><description>For a finite sequence ( x i ) i = 1 N in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-023-00958-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Combinatorics ; Mathematics ; Mathematics and Statistics ; Sequences</subject><ispartof>Aequationes mathematicae, 2023-08, Vol.97 (4), p.683-705</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-52a5fa20415005ba033a85178b0cd6e84fc00d7739bf6e88778bfae4655a21293</cites><orcidid>0000-0002-3866-6874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-023-00958-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-023-00958-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Weiß, Christian</creatorcontrib><title>Deviation from equidistance for one-dimensional sequences</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>For a finite sequence ( x i ) i = 1 N in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences.</description><subject>Analysis</subject><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sequences</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1Lw0AQxRdRsFb_AU8Bz6uzX8nmKPUTCl70vGySXUlps3UnlfrfOzWCN0_D8H5v5vEYuxRwLQCqGwQAARyk4gC1sXx_xGZCS-C2BnXMZged12D0KTtDXNEmq0rNWH0XPns_9mkoYk6bInzs-q7H0Q9tKGLKRRoC7_pNGJAYvy6QiEAinrOT6NcYLn7nnL093L8unvjy5fF5cbvkrRJ65EZ6E70ELQyAaTwo5a0RlW2g7cpgdWwBOspSN5FWW5ESfdClMV4KWas5u5rubnOi1zi6VdplioJOWqmVqmwpiZIT1eaEmEN029xvfP5yAtyhIjdV5Kgi91OR25NJTSYkeHgP-e_0P65vqslo3g</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Weiß, Christian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid></search><sort><creationdate>20230801</creationdate><title>Deviation from equidistance for one-dimensional sequences</title><author>Weiß, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-52a5fa20415005ba033a85178b0cd6e84fc00d7739bf6e88778bfae4655a21293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiß, Christian</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiß, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deviation from equidistance for one-dimensional sequences</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>97</volume><issue>4</issue><spage>683</spage><epage>705</epage><pages>683-705</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>For a finite sequence ( x i ) i = 1 N in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-023-00958-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-9054
ispartof Aequationes mathematicae, 2023-08, Vol.97 (4), p.683-705
issn 0001-9054
1420-8903
language eng
recordid cdi_proquest_journals_2824337862
source SpringerLink
subjects Analysis
Combinatorics
Mathematics
Mathematics and Statistics
Sequences
title Deviation from equidistance for one-dimensional sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deviation%20from%20equidistance%20for%20one-dimensional%20sequences&rft.jtitle=Aequationes%20mathematicae&rft.au=Wei%C3%9F,%20Christian&rft.date=2023-08-01&rft.volume=97&rft.issue=4&rft.spage=683&rft.epage=705&rft.pages=683-705&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-023-00958-x&rft_dat=%3Cproquest_cross%3E2824337862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824337862&rft_id=info:pmid/&rfr_iscdi=true