Deviation from equidistance for one-dimensional sequences
For a finite sequence ( x i ) i = 1 N in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss...
Gespeichert in:
Veröffentlicht in: | Aequationes mathematicae 2023-08, Vol.97 (4), p.683-705 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 4 |
container_start_page | 683 |
container_title | Aequationes mathematicae |
container_volume | 97 |
creator | Weiß, Christian |
description | For a finite sequence
(
x
i
)
i
=
1
N
in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences. |
doi_str_mv | 10.1007/s00010-023-00958-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824337862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824337862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-52a5fa20415005ba033a85178b0cd6e84fc00d7739bf6e88778bfae4655a21293</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_AU8Bz6uzX8nmKPUTCl70vGySXUlps3UnlfrfOzWCN0_D8H5v5vEYuxRwLQCqGwQAARyk4gC1sXx_xGZCS-C2BnXMZged12D0KTtDXNEmq0rNWH0XPns_9mkoYk6bInzs-q7H0Q9tKGLKRRoC7_pNGJAYvy6QiEAinrOT6NcYLn7nnL093L8unvjy5fF5cbvkrRJ65EZ6E70ELQyAaTwo5a0RlW2g7cpgdWwBOspSN5FWW5ESfdClMV4KWas5u5rubnOi1zi6VdplioJOWqmVqmwpiZIT1eaEmEN029xvfP5yAtyhIjdV5Kgi91OR25NJTSYkeHgP-e_0P65vqslo3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824337862</pqid></control><display><type>article</type><title>Deviation from equidistance for one-dimensional sequences</title><source>SpringerLink</source><creator>Weiß, Christian</creator><creatorcontrib>Weiß, Christian</creatorcontrib><description>For a finite sequence
(
x
i
)
i
=
1
N
in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences.</description><identifier>ISSN: 0001-9054</identifier><identifier>EISSN: 1420-8903</identifier><identifier>DOI: 10.1007/s00010-023-00958-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Combinatorics ; Mathematics ; Mathematics and Statistics ; Sequences</subject><ispartof>Aequationes mathematicae, 2023-08, Vol.97 (4), p.683-705</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-52a5fa20415005ba033a85178b0cd6e84fc00d7739bf6e88778bfae4655a21293</cites><orcidid>0000-0002-3866-6874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00010-023-00958-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00010-023-00958-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Weiß, Christian</creatorcontrib><title>Deviation from equidistance for one-dimensional sequences</title><title>Aequationes mathematicae</title><addtitle>Aequat. Math</addtitle><description>For a finite sequence
(
x
i
)
i
=
1
N
in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences.</description><subject>Analysis</subject><subject>Combinatorics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sequences</subject><issn>0001-9054</issn><issn>1420-8903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1Lw0AQxRdRsFb_AU8Bz6uzX8nmKPUTCl70vGySXUlps3UnlfrfOzWCN0_D8H5v5vEYuxRwLQCqGwQAARyk4gC1sXx_xGZCS-C2BnXMZged12D0KTtDXNEmq0rNWH0XPns_9mkoYk6bInzs-q7H0Q9tKGLKRRoC7_pNGJAYvy6QiEAinrOT6NcYLn7nnL093L8unvjy5fF5cbvkrRJ65EZ6E70ELQyAaTwo5a0RlW2g7cpgdWwBOspSN5FWW5ESfdClMV4KWas5u5rubnOi1zi6VdplioJOWqmVqmwpiZIT1eaEmEN029xvfP5yAtyhIjdV5Kgi91OR25NJTSYkeHgP-e_0P65vqslo3g</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Weiß, Christian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid></search><sort><creationdate>20230801</creationdate><title>Deviation from equidistance for one-dimensional sequences</title><author>Weiß, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-52a5fa20415005ba033a85178b0cd6e84fc00d7739bf6e88778bfae4655a21293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Combinatorics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiß, Christian</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Aequationes mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiß, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deviation from equidistance for one-dimensional sequences</atitle><jtitle>Aequationes mathematicae</jtitle><stitle>Aequat. Math</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>97</volume><issue>4</issue><spage>683</spage><epage>705</epage><pages>683-705</pages><issn>0001-9054</issn><eissn>1420-8903</eissn><abstract>For a finite sequence
(
x
i
)
i
=
1
N
in the unit interval, we introduce the gap ratio function which measures the size of the maximal gap length relative to all other gap lengths. This function (asymptotically) captures a lot of information about the degree of uniformity of the sequence. We discuss connections to the theories of dispersion, discrepancy, pair correlation statistics and covering numbers. Furthermore, we explicitly calculate the gap ratio function for some important classes of uniformly distributed sequences.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00010-023-00958-x</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3866-6874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9054 |
ispartof | Aequationes mathematicae, 2023-08, Vol.97 (4), p.683-705 |
issn | 0001-9054 1420-8903 |
language | eng |
recordid | cdi_proquest_journals_2824337862 |
source | SpringerLink |
subjects | Analysis Combinatorics Mathematics Mathematics and Statistics Sequences |
title | Deviation from equidistance for one-dimensional sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deviation%20from%20equidistance%20for%20one-dimensional%20sequences&rft.jtitle=Aequationes%20mathematicae&rft.au=Wei%C3%9F,%20Christian&rft.date=2023-08-01&rft.volume=97&rft.issue=4&rft.spage=683&rft.epage=705&rft.pages=683-705&rft.issn=0001-9054&rft.eissn=1420-8903&rft_id=info:doi/10.1007/s00010-023-00958-x&rft_dat=%3Cproquest_cross%3E2824337862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824337862&rft_id=info:pmid/&rfr_iscdi=true |