Generic isomorphism classes of abelian groups
We prove that the universal solenoid is the generic (in the sense of Baire category) connected compact metrizable abelian group. We also settle the dual problem in the sense of Pontryagin duality: \((\mathbb{Q},+)\), which is the dual of the universal solenoid, is the generic countably infinite tors...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Darji, Udayan B Elekes, Márton Kátay, Tamás Kocsis, Anett Máté Pálfy |
description | We prove that the universal solenoid is the generic (in the sense of Baire category) connected compact metrizable abelian group. We also settle the dual problem in the sense of Pontryagin duality: \((\mathbb{Q},+)\), which is the dual of the universal solenoid, is the generic countably infinite torsion-free abelian group. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2824146335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824146335</sourcerecordid><originalsourceid>FETCH-proquest_journals_28241463353</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQKuA-lMUrsXfw7gvsQy1ZQ0iRl7f114AFdv8b2VqACxUZ0B2IiaedJaQ3sAa7ES6kKRih-k5zSnkp-eZzkEx0ws0yjdnYJ3UT5KWjLvxHp0gan-dSv259PteFW5pNdC_O6ntJT4pR46MI1pES3-d30A4hoyRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824146335</pqid></control><display><type>article</type><title>Generic isomorphism classes of abelian groups</title><source>Free E- Journals</source><creator>Darji, Udayan B ; Elekes, Márton ; Kátay, Tamás ; Kocsis, Anett ; Máté Pálfy</creator><creatorcontrib>Darji, Udayan B ; Elekes, Márton ; Kátay, Tamás ; Kocsis, Anett ; Máté Pálfy</creatorcontrib><description>We prove that the universal solenoid is the generic (in the sense of Baire category) connected compact metrizable abelian group. We also settle the dual problem in the sense of Pontryagin duality: \((\mathbb{Q},+)\), which is the dual of the universal solenoid, is the generic countably infinite torsion-free abelian group.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Group theory ; Isomorphism ; Solenoids</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Darji, Udayan B</creatorcontrib><creatorcontrib>Elekes, Márton</creatorcontrib><creatorcontrib>Kátay, Tamás</creatorcontrib><creatorcontrib>Kocsis, Anett</creatorcontrib><creatorcontrib>Máté Pálfy</creatorcontrib><title>Generic isomorphism classes of abelian groups</title><title>arXiv.org</title><description>We prove that the universal solenoid is the generic (in the sense of Baire category) connected compact metrizable abelian group. We also settle the dual problem in the sense of Pontryagin duality: \((\mathbb{Q},+)\), which is the dual of the universal solenoid, is the generic countably infinite torsion-free abelian group.</description><subject>Group theory</subject><subject>Isomorphism</subject><subject>Solenoids</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQKuA-lMUrsXfw7gvsQy1ZQ0iRl7f114AFdv8b2VqACxUZ0B2IiaedJaQ3sAa7ES6kKRih-k5zSnkp-eZzkEx0ws0yjdnYJ3UT5KWjLvxHp0gan-dSv259PteFW5pNdC_O6ntJT4pR46MI1pES3-d30A4hoyRA</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Darji, Udayan B</creator><creator>Elekes, Márton</creator><creator>Kátay, Tamás</creator><creator>Kocsis, Anett</creator><creator>Máté Pálfy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230608</creationdate><title>Generic isomorphism classes of abelian groups</title><author>Darji, Udayan B ; Elekes, Márton ; Kátay, Tamás ; Kocsis, Anett ; Máté Pálfy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28241463353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Group theory</topic><topic>Isomorphism</topic><topic>Solenoids</topic><toplevel>online_resources</toplevel><creatorcontrib>Darji, Udayan B</creatorcontrib><creatorcontrib>Elekes, Márton</creatorcontrib><creatorcontrib>Kátay, Tamás</creatorcontrib><creatorcontrib>Kocsis, Anett</creatorcontrib><creatorcontrib>Máté Pálfy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darji, Udayan B</au><au>Elekes, Márton</au><au>Kátay, Tamás</au><au>Kocsis, Anett</au><au>Máté Pálfy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generic isomorphism classes of abelian groups</atitle><jtitle>arXiv.org</jtitle><date>2023-06-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We prove that the universal solenoid is the generic (in the sense of Baire category) connected compact metrizable abelian group. We also settle the dual problem in the sense of Pontryagin duality: \((\mathbb{Q},+)\), which is the dual of the universal solenoid, is the generic countably infinite torsion-free abelian group.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2824146335 |
source | Free E- Journals |
subjects | Group theory Isomorphism Solenoids |
title | Generic isomorphism classes of abelian groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generic%20isomorphism%20classes%20of%20abelian%20groups&rft.jtitle=arXiv.org&rft.au=Darji,%20Udayan%20B&rft.date=2023-06-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2824146335%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824146335&rft_id=info:pmid/&rfr_iscdi=true |