On the Use of Generative Models in Observational Causal Analysis
The use of a hypothetical generative model was been suggested for causal analysis of observational data. The very assumption of a particular model is a commitment to a certain set of variables and therefore to a certain set of possible causes. Estimating the joint probability distribution of can be...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Megiddo, Nimrod |
description | The use of a hypothetical generative model was been suggested for causal analysis of observational data. The very assumption of a particular model is a commitment to a certain set of variables and therefore to a certain set of possible causes. Estimating the joint probability distribution of can be useful for predicting values of variables in view of the observed values of others, but it is not sufficient for inferring causal relationships. The model describes a single observable distribution and cannot a chain of effects of intervention that deviate from the observed distribution. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2824146205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824146205</sourcerecordid><originalsourceid>FETCH-proquest_journals_28241462053</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBaGO-M5rKQHptwU2sZ6UqKzNRcFfr7ZtEHtDqHw1mICJVKk0IjrkTM3EspMd9hlqlI7CsL45PgzgSuhTNZ8mbsZoKre9DA0FmoGiY_h-qsGaA0Ewccgn-4441YtmZgin9ci-3peCsvycu790Q81r2bfJi5xgJ1qnOUmfrv-gLYiDhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824146205</pqid></control><display><type>article</type><title>On the Use of Generative Models in Observational Causal Analysis</title><source>Free E- Journals</source><creator>Megiddo, Nimrod</creator><creatorcontrib>Megiddo, Nimrod</creatorcontrib><description>The use of a hypothetical generative model was been suggested for causal analysis of observational data. The very assumption of a particular model is a commitment to a certain set of variables and therefore to a certain set of possible causes. Estimating the joint probability distribution of can be useful for predicting values of variables in view of the observed values of others, but it is not sufficient for inferring causal relationships. The model describes a single observable distribution and cannot a chain of effects of intervention that deviate from the observed distribution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Megiddo, Nimrod</creatorcontrib><title>On the Use of Generative Models in Observational Causal Analysis</title><title>arXiv.org</title><description>The use of a hypothetical generative model was been suggested for causal analysis of observational data. The very assumption of a particular model is a commitment to a certain set of variables and therefore to a certain set of possible causes. Estimating the joint probability distribution of can be useful for predicting values of variables in view of the observed values of others, but it is not sufficient for inferring causal relationships. The model describes a single observable distribution and cannot a chain of effects of intervention that deviate from the observed distribution.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBaGO-M5rKQHptwU2sZ6UqKzNRcFfr7ZtEHtDqHw1mICJVKk0IjrkTM3EspMd9hlqlI7CsL45PgzgSuhTNZ8mbsZoKre9DA0FmoGiY_h-qsGaA0Ewccgn-4441YtmZgin9ci-3peCsvycu790Q81r2bfJi5xgJ1qnOUmfrv-gLYiDhk</recordid><startdate>20230607</startdate><enddate>20230607</enddate><creator>Megiddo, Nimrod</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230607</creationdate><title>On the Use of Generative Models in Observational Causal Analysis</title><author>Megiddo, Nimrod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28241462053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Megiddo, Nimrod</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megiddo, Nimrod</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Use of Generative Models in Observational Causal Analysis</atitle><jtitle>arXiv.org</jtitle><date>2023-06-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The use of a hypothetical generative model was been suggested for causal analysis of observational data. The very assumption of a particular model is a commitment to a certain set of variables and therefore to a certain set of possible causes. Estimating the joint probability distribution of can be useful for predicting values of variables in view of the observed values of others, but it is not sufficient for inferring causal relationships. The model describes a single observable distribution and cannot a chain of effects of intervention that deviate from the observed distribution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2824146205 |
source | Free E- Journals |
title | On the Use of Generative Models in Observational Causal Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Use%20of%20Generative%20Models%20in%20Observational%20Causal%20Analysis&rft.jtitle=arXiv.org&rft.au=Megiddo,%20Nimrod&rft.date=2023-06-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2824146205%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824146205&rft_id=info:pmid/&rfr_iscdi=true |