MSAFFNet: A Multiscale Label-Supervised Attention Feature Fusion Network for Infrared Small Target Detection

The detection of small infrared targets with low signal-to-noise ratios (SNRs) and contrasts in noisy and cluttered backgrounds is challenging and therefore a domain of active research. Traditional methods result in a large number of false alarms and missed detections. In the case of convolutional n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-16
Hauptverfasser: Tong, Xiaozhong, Su, Shaojing, Wu, Peng, Guo, Runze, Wei, Junyu, Zuo, Zhen, Sun, Bei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Tong, Xiaozhong
Su, Shaojing
Wu, Peng
Guo, Runze
Wei, Junyu
Zuo, Zhen
Sun, Bei
description The detection of small infrared targets with low signal-to-noise ratios (SNRs) and contrasts in noisy and cluttered backgrounds is challenging and therefore a domain of active research. Traditional methods result in a large number of false alarms and missed detections. In the case of convolutional neural network (CNN)-based methods, it may not be possible to identify deep small targets or the details of the target’s edge contours may not be appropriately considered. Therefore, this article proposes MSAFFNet to perform infrared small target detection (IRSTD) based on an encoder–decoder framework. In the encoder stage, small target features are extracted using a resnet-20 backbone network, and the global contextual features of small targets are extracted using an atrous spatial pyramid pooling module (ASPPM). In the decoding stage, a dual-attention module (DAM) is used to selectively enhance the spatial details of the target at the shallow level and representative features of the semantic information at the deep level. Multiscale feature maps are then concatenated to achieve superior feature fusion. Additionally, multiscale labels are constructed to focus on the details of the target contour and internal features based on edge information and an internal feature aggregation module (EIFAM). Experiments conducted on the nanjing university of aeronautics and astronautics-single-frame infrared small target (NUAA-SIRST), national university of defense technology- SIRST (NUDT-SIRST), and xidian university-SIRST (XDU-SIRST) datasets revealed that the proposed approach outperforms the representative methods and achieves an improved detection performance.
doi_str_mv 10.1109/TGRS.2023.3279253
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2824113417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2824113417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-a8b672e853b064e716cc500180cc13c13a9cfba39a2c6a453ae0797d0498f0e33</originalsourceid><addsrcrecordid>eNotkF9LwzAUxYMoOKcfwLeAz5350zaJb2XaOdgU7HwOaXYrnV07k3Tit7dlgwuHC-fce_ghdE_JjFKiHjeLj2LGCOMzzoRiCb9AE5okMiJpHF-iCaEqjZhU7BrdeL8jhMYJFRPUrIssz98gPOEMr_sm1N6aBvDKlNBERX8Ad6w9bHEWArSh7lqcgwm9A5z3flyH7G_nvnHVObxsK2fc4C72pmnwxrgvCPgZAtgxeouuKtN4uDvrFH3mL5v5a7R6Xyzn2SqyTPAQGVmmgoFMeDm0B0FTa5OhsSTWUj6MUbYqDVeG2dTECTdAhBJbEitZEeB8ih5Odw-u--nBB73retcOLzWTLKaUx1QMLnpyWdd576DSB1fvjfvTlOgRqh6h6hGqPkPl_zXYafI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824113417</pqid></control><display><type>article</type><title>MSAFFNet: A Multiscale Label-Supervised Attention Feature Fusion Network for Infrared Small Target Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Tong, Xiaozhong ; Su, Shaojing ; Wu, Peng ; Guo, Runze ; Wei, Junyu ; Zuo, Zhen ; Sun, Bei</creator><creatorcontrib>Tong, Xiaozhong ; Su, Shaojing ; Wu, Peng ; Guo, Runze ; Wei, Junyu ; Zuo, Zhen ; Sun, Bei</creatorcontrib><description>The detection of small infrared targets with low signal-to-noise ratios (SNRs) and contrasts in noisy and cluttered backgrounds is challenging and therefore a domain of active research. Traditional methods result in a large number of false alarms and missed detections. In the case of convolutional neural network (CNN)-based methods, it may not be possible to identify deep small targets or the details of the target’s edge contours may not be appropriately considered. Therefore, this article proposes MSAFFNet to perform infrared small target detection (IRSTD) based on an encoder–decoder framework. In the encoder stage, small target features are extracted using a resnet-20 backbone network, and the global contextual features of small targets are extracted using an atrous spatial pyramid pooling module (ASPPM). In the decoding stage, a dual-attention module (DAM) is used to selectively enhance the spatial details of the target at the shallow level and representative features of the semantic information at the deep level. Multiscale feature maps are then concatenated to achieve superior feature fusion. Additionally, multiscale labels are constructed to focus on the details of the target contour and internal features based on edge information and an internal feature aggregation module (EIFAM). Experiments conducted on the nanjing university of aeronautics and astronautics-single-frame infrared small target (NUAA-SIRST), national university of defense technology- SIRST (NUDT-SIRST), and xidian university-SIRST (XDU-SIRST) datasets revealed that the proposed approach outperforms the representative methods and achieves an improved detection performance.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3279253</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Aeronautics ; Aggregation ; Artificial neural networks ; Astronautics ; Coders ; Computer networks ; Decoding ; Detection ; False alarms ; Feature maps ; Methods ; Military technology ; Modules ; Neural networks ; Target detection</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-a8b672e853b064e716cc500180cc13c13a9cfba39a2c6a453ae0797d0498f0e33</citedby><cites>FETCH-LOGICAL-c273t-a8b672e853b064e716cc500180cc13c13a9cfba39a2c6a453ae0797d0498f0e33</cites><orcidid>0000-0002-3250-8568 ; 0000-0003-4357-4488 ; 0000-0002-9055-9232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Tong, Xiaozhong</creatorcontrib><creatorcontrib>Su, Shaojing</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Guo, Runze</creatorcontrib><creatorcontrib>Wei, Junyu</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Bei</creatorcontrib><title>MSAFFNet: A Multiscale Label-Supervised Attention Feature Fusion Network for Infrared Small Target Detection</title><title>IEEE transactions on geoscience and remote sensing</title><description>The detection of small infrared targets with low signal-to-noise ratios (SNRs) and contrasts in noisy and cluttered backgrounds is challenging and therefore a domain of active research. Traditional methods result in a large number of false alarms and missed detections. In the case of convolutional neural network (CNN)-based methods, it may not be possible to identify deep small targets or the details of the target’s edge contours may not be appropriately considered. Therefore, this article proposes MSAFFNet to perform infrared small target detection (IRSTD) based on an encoder–decoder framework. In the encoder stage, small target features are extracted using a resnet-20 backbone network, and the global contextual features of small targets are extracted using an atrous spatial pyramid pooling module (ASPPM). In the decoding stage, a dual-attention module (DAM) is used to selectively enhance the spatial details of the target at the shallow level and representative features of the semantic information at the deep level. Multiscale feature maps are then concatenated to achieve superior feature fusion. Additionally, multiscale labels are constructed to focus on the details of the target contour and internal features based on edge information and an internal feature aggregation module (EIFAM). Experiments conducted on the nanjing university of aeronautics and astronautics-single-frame infrared small target (NUAA-SIRST), national university of defense technology- SIRST (NUDT-SIRST), and xidian university-SIRST (XDU-SIRST) datasets revealed that the proposed approach outperforms the representative methods and achieves an improved detection performance.</description><subject>Aeronautics</subject><subject>Aggregation</subject><subject>Artificial neural networks</subject><subject>Astronautics</subject><subject>Coders</subject><subject>Computer networks</subject><subject>Decoding</subject><subject>Detection</subject><subject>False alarms</subject><subject>Feature maps</subject><subject>Methods</subject><subject>Military technology</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Target detection</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkF9LwzAUxYMoOKcfwLeAz5350zaJb2XaOdgU7HwOaXYrnV07k3Tit7dlgwuHC-fce_ghdE_JjFKiHjeLj2LGCOMzzoRiCb9AE5okMiJpHF-iCaEqjZhU7BrdeL8jhMYJFRPUrIssz98gPOEMr_sm1N6aBvDKlNBERX8Ad6w9bHEWArSh7lqcgwm9A5z3flyH7G_nvnHVObxsK2fc4C72pmnwxrgvCPgZAtgxeouuKtN4uDvrFH3mL5v5a7R6Xyzn2SqyTPAQGVmmgoFMeDm0B0FTa5OhsSTWUj6MUbYqDVeG2dTECTdAhBJbEitZEeB8ih5Odw-u--nBB73retcOLzWTLKaUx1QMLnpyWdd576DSB1fvjfvTlOgRqh6h6hGqPkPl_zXYafI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tong, Xiaozhong</creator><creator>Su, Shaojing</creator><creator>Wu, Peng</creator><creator>Guo, Runze</creator><creator>Wei, Junyu</creator><creator>Zuo, Zhen</creator><creator>Sun, Bei</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3250-8568</orcidid><orcidid>https://orcid.org/0000-0003-4357-4488</orcidid><orcidid>https://orcid.org/0000-0002-9055-9232</orcidid></search><sort><creationdate>2023</creationdate><title>MSAFFNet: A Multiscale Label-Supervised Attention Feature Fusion Network for Infrared Small Target Detection</title><author>Tong, Xiaozhong ; Su, Shaojing ; Wu, Peng ; Guo, Runze ; Wei, Junyu ; Zuo, Zhen ; Sun, Bei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-a8b672e853b064e716cc500180cc13c13a9cfba39a2c6a453ae0797d0498f0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aeronautics</topic><topic>Aggregation</topic><topic>Artificial neural networks</topic><topic>Astronautics</topic><topic>Coders</topic><topic>Computer networks</topic><topic>Decoding</topic><topic>Detection</topic><topic>False alarms</topic><topic>Feature maps</topic><topic>Methods</topic><topic>Military technology</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Xiaozhong</creatorcontrib><creatorcontrib>Su, Shaojing</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Guo, Runze</creatorcontrib><creatorcontrib>Wei, Junyu</creatorcontrib><creatorcontrib>Zuo, Zhen</creatorcontrib><creatorcontrib>Sun, Bei</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Xiaozhong</au><au>Su, Shaojing</au><au>Wu, Peng</au><au>Guo, Runze</au><au>Wei, Junyu</au><au>Zuo, Zhen</au><au>Sun, Bei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSAFFNet: A Multiscale Label-Supervised Attention Feature Fusion Network for Infrared Small Target Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>The detection of small infrared targets with low signal-to-noise ratios (SNRs) and contrasts in noisy and cluttered backgrounds is challenging and therefore a domain of active research. Traditional methods result in a large number of false alarms and missed detections. In the case of convolutional neural network (CNN)-based methods, it may not be possible to identify deep small targets or the details of the target’s edge contours may not be appropriately considered. Therefore, this article proposes MSAFFNet to perform infrared small target detection (IRSTD) based on an encoder–decoder framework. In the encoder stage, small target features are extracted using a resnet-20 backbone network, and the global contextual features of small targets are extracted using an atrous spatial pyramid pooling module (ASPPM). In the decoding stage, a dual-attention module (DAM) is used to selectively enhance the spatial details of the target at the shallow level and representative features of the semantic information at the deep level. Multiscale feature maps are then concatenated to achieve superior feature fusion. Additionally, multiscale labels are constructed to focus on the details of the target contour and internal features based on edge information and an internal feature aggregation module (EIFAM). Experiments conducted on the nanjing university of aeronautics and astronautics-single-frame infrared small target (NUAA-SIRST), national university of defense technology- SIRST (NUDT-SIRST), and xidian university-SIRST (XDU-SIRST) datasets revealed that the proposed approach outperforms the representative methods and achieves an improved detection performance.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2023.3279253</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3250-8568</orcidid><orcidid>https://orcid.org/0000-0003-4357-4488</orcidid><orcidid>https://orcid.org/0000-0002-9055-9232</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-16
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2824113417
source IEEE Electronic Library (IEL)
subjects Aeronautics
Aggregation
Artificial neural networks
Astronautics
Coders
Computer networks
Decoding
Detection
False alarms
Feature maps
Methods
Military technology
Modules
Neural networks
Target detection
title MSAFFNet: A Multiscale Label-Supervised Attention Feature Fusion Network for Infrared Small Target Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSAFFNet:%20A%20Multiscale%20Label-Supervised%20Attention%20Feature%20Fusion%20Network%20for%20Infrared%20Small%20Target%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Tong,%20Xiaozhong&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2023.3279253&rft_dat=%3Cproquest_cross%3E2824113417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824113417&rft_id=info:pmid/&rfr_iscdi=true