Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults

The dependence of high-impedance faults (HIFs) detection methods on a large amount of training data has always been a fundamental problem in electrical distribution systems. This article proposes a novel protection system based on the transfer learning technique and GoogleNet architecture to reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2023-06, Vol.17 (2), p.1-12
Hauptverfasser: Mohammadi, Amin, Jannati, Mohsen, Shams, Mohammadreza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2
container_start_page 1
container_title IEEE systems journal
container_volume 17
creator Mohammadi, Amin
Jannati, Mohsen
Shams, Mohammadreza
description The dependence of high-impedance faults (HIFs) detection methods on a large amount of training data has always been a fundamental problem in electrical distribution systems. This article proposes a novel protection system based on the transfer learning technique and GoogleNet architecture to reduce this dependence. The proposed protection system uses a small amount of data to extend the knowledge of pretrained GoogleNet architecture to the HIF detection problem. In this system, a small amount of third harmonic angle data of the current at the measurement point are obtained from the understudy electrical distribution system. Then, the preprocessing phase is performed, and the extracted data are converted to image data using the Wigner-Ville distribution. Afterward, these converted images are fed to the GoogleNet architecture as an input dataset to update the GoogleNet pretrained knowledge. Finally, the process of fault detection and classification is accomplished only by transferring the GoogleNet pretrained knowledge. The simulation results of the modified IEEE 13-bus and 34-bus distribution systems in EMTP-RV and MATLAB indicate the high accuracy of the proposed protection system despite the use of a small amount of input training data.
doi_str_mv 10.1109/JSYST.2023.3234655
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2824112684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025599</ieee_id><sourcerecordid>2824112684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-7c44f538b3bfa0a7f65199d418107adfe0f1f2cc839bbe029d4f1910481367f23</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIlMIPIA6WOKf4kYd9rFpKiyqB1PTAKXLcdesqdYLtHPr3pI8Dl93Z3Znd1UTRM8EjQrB4-1z9rIoRxZSNGGVJlqY30YAIlseiL2_PmMac8OQ-evB-j3HK01wMombtjd2iKUCLCiet1-DQEqSzp3YBamfNbwcoNOjbNQFUQO91H51RskZT43tUdcE0Fq2OPsDBo_FWGusDmpvtLl4cWthIqwDNZFcH_xjdaVl7eLrmYbSevReTebz8-lhMxstYUZGFOFdJolPGK1ZpiWWus5QIsUkIJziXGw1YE02V4kxUFWDajzQRBCecsCzXlA2j18ve1jX9_z6U-6Zztj9ZUk4TQmjGk55FLyzlGu8d6LJ15iDdsSS4PBlbno0tT8aWV2N70ctFZADgnwDTNBWC_QGl93XZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824112684</pqid></control><display><type>article</type><title>Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults</title><source>IEEE Electronic Library (IEL)</source><creator>Mohammadi, Amin ; Jannati, Mohsen ; Shams, Mohammadreza</creator><creatorcontrib>Mohammadi, Amin ; Jannati, Mohsen ; Shams, Mohammadreza</creatorcontrib><description>The dependence of high-impedance faults (HIFs) detection methods on a large amount of training data has always been a fundamental problem in electrical distribution systems. This article proposes a novel protection system based on the transfer learning technique and GoogleNet architecture to reduce this dependence. The proposed protection system uses a small amount of data to extend the knowledge of pretrained GoogleNet architecture to the HIF detection problem. In this system, a small amount of third harmonic angle data of the current at the measurement point are obtained from the understudy electrical distribution system. Then, the preprocessing phase is performed, and the extracted data are converted to image data using the Wigner-Ville distribution. Afterward, these converted images are fed to the GoogleNet architecture as an input dataset to update the GoogleNet pretrained knowledge. Finally, the process of fault detection and classification is accomplished only by transferring the GoogleNet pretrained knowledge. The simulation results of the modified IEEE 13-bus and 34-bus distribution systems in EMTP-RV and MATLAB indicate the high accuracy of the proposed protection system despite the use of a small amount of input training data.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2023.3234655</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Discrete wavelet transforms ; Fault detection ; Feature extraction ; GoogleNet architecture ; Harmonic analysis ; High impedance ; high-impedance fault (HIF) ; Learning ; protection system ; Switches ; Training ; Training data ; transfer learning technique ; Transient analysis ; Wigner–Ville distribution (WVD)</subject><ispartof>IEEE systems journal, 2023-06, Vol.17 (2), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-7c44f538b3bfa0a7f65199d418107adfe0f1f2cc839bbe029d4f1910481367f23</citedby><cites>FETCH-LOGICAL-c296t-7c44f538b3bfa0a7f65199d418107adfe0f1f2cc839bbe029d4f1910481367f23</cites><orcidid>0000-0002-9233-8070 ; 0000-0001-6846-4838 ; 0000-0002-0589-9946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10025599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohammadi, Amin</creatorcontrib><creatorcontrib>Jannati, Mohsen</creatorcontrib><creatorcontrib>Shams, Mohammadreza</creatorcontrib><title>Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>The dependence of high-impedance faults (HIFs) detection methods on a large amount of training data has always been a fundamental problem in electrical distribution systems. This article proposes a novel protection system based on the transfer learning technique and GoogleNet architecture to reduce this dependence. The proposed protection system uses a small amount of data to extend the knowledge of pretrained GoogleNet architecture to the HIF detection problem. In this system, a small amount of third harmonic angle data of the current at the measurement point are obtained from the understudy electrical distribution system. Then, the preprocessing phase is performed, and the extracted data are converted to image data using the Wigner-Ville distribution. Afterward, these converted images are fed to the GoogleNet architecture as an input dataset to update the GoogleNet pretrained knowledge. Finally, the process of fault detection and classification is accomplished only by transferring the GoogleNet pretrained knowledge. The simulation results of the modified IEEE 13-bus and 34-bus distribution systems in EMTP-RV and MATLAB indicate the high accuracy of the proposed protection system despite the use of a small amount of input training data.</description><subject>Capacitors</subject><subject>Discrete wavelet transforms</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>GoogleNet architecture</subject><subject>Harmonic analysis</subject><subject>High impedance</subject><subject>high-impedance fault (HIF)</subject><subject>Learning</subject><subject>protection system</subject><subject>Switches</subject><subject>Training</subject><subject>Training data</subject><subject>transfer learning technique</subject><subject>Transient analysis</subject><subject>Wigner–Ville distribution (WVD)</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQjBBIlMIPIA6WOKf4kYd9rFpKiyqB1PTAKXLcdesqdYLtHPr3pI8Dl93Z3Znd1UTRM8EjQrB4-1z9rIoRxZSNGGVJlqY30YAIlseiL2_PmMac8OQ-evB-j3HK01wMombtjd2iKUCLCiet1-DQEqSzp3YBamfNbwcoNOjbNQFUQO91H51RskZT43tUdcE0Fq2OPsDBo_FWGusDmpvtLl4cWthIqwDNZFcH_xjdaVl7eLrmYbSevReTebz8-lhMxstYUZGFOFdJolPGK1ZpiWWus5QIsUkIJziXGw1YE02V4kxUFWDajzQRBCecsCzXlA2j18ve1jX9_z6U-6Zztj9ZUk4TQmjGk55FLyzlGu8d6LJ15iDdsSS4PBlbno0tT8aWV2N70ctFZADgnwDTNBWC_QGl93XZ</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Mohammadi, Amin</creator><creator>Jannati, Mohsen</creator><creator>Shams, Mohammadreza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9233-8070</orcidid><orcidid>https://orcid.org/0000-0001-6846-4838</orcidid><orcidid>https://orcid.org/0000-0002-0589-9946</orcidid></search><sort><creationdate>20230601</creationdate><title>Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults</title><author>Mohammadi, Amin ; Jannati, Mohsen ; Shams, Mohammadreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-7c44f538b3bfa0a7f65199d418107adfe0f1f2cc839bbe029d4f1910481367f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitors</topic><topic>Discrete wavelet transforms</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>GoogleNet architecture</topic><topic>Harmonic analysis</topic><topic>High impedance</topic><topic>high-impedance fault (HIF)</topic><topic>Learning</topic><topic>protection system</topic><topic>Switches</topic><topic>Training</topic><topic>Training data</topic><topic>transfer learning technique</topic><topic>Transient analysis</topic><topic>Wigner–Ville distribution (WVD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, Amin</creatorcontrib><creatorcontrib>Jannati, Mohsen</creatorcontrib><creatorcontrib>Shams, Mohammadreza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohammadi, Amin</au><au>Jannati, Mohsen</au><au>Shams, Mohammadreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>The dependence of high-impedance faults (HIFs) detection methods on a large amount of training data has always been a fundamental problem in electrical distribution systems. This article proposes a novel protection system based on the transfer learning technique and GoogleNet architecture to reduce this dependence. The proposed protection system uses a small amount of data to extend the knowledge of pretrained GoogleNet architecture to the HIF detection problem. In this system, a small amount of third harmonic angle data of the current at the measurement point are obtained from the understudy electrical distribution system. Then, the preprocessing phase is performed, and the extracted data are converted to image data using the Wigner-Ville distribution. Afterward, these converted images are fed to the GoogleNet architecture as an input dataset to update the GoogleNet pretrained knowledge. Finally, the process of fault detection and classification is accomplished only by transferring the GoogleNet pretrained knowledge. The simulation results of the modified IEEE 13-bus and 34-bus distribution systems in EMTP-RV and MATLAB indicate the high accuracy of the proposed protection system despite the use of a small amount of input training data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2023.3234655</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9233-8070</orcidid><orcidid>https://orcid.org/0000-0001-6846-4838</orcidid><orcidid>https://orcid.org/0000-0002-0589-9946</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2023-06, Vol.17 (2), p.1-12
issn 1932-8184
1937-9234
language eng
recordid cdi_proquest_journals_2824112684
source IEEE Electronic Library (IEL)
subjects Capacitors
Discrete wavelet transforms
Fault detection
Feature extraction
GoogleNet architecture
Harmonic analysis
High impedance
high-impedance fault (HIF)
Learning
protection system
Switches
Training
Training data
transfer learning technique
Transient analysis
Wigner–Ville distribution (WVD)
title Using Deep Transfer Learning Technique to Protect Electrical Distribution Systems Against High-Impedance Faults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Deep%20Transfer%20Learning%20Technique%20to%20Protect%20Electrical%20Distribution%20Systems%20Against%20High-Impedance%20Faults&rft.jtitle=IEEE%20systems%20journal&rft.au=Mohammadi,%20Amin&rft.date=2023-06-01&rft.volume=17&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2023.3234655&rft_dat=%3Cproquest_RIE%3E2824112684%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824112684&rft_id=info:pmid/&rft_ieee_id=10025599&rfr_iscdi=true