A domain categorisation of vocabularies based on a deep learning classifier

The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information science 2023-06, Vol.49 (3), p.699-710
Hauptverfasser: Nogales, Alberto, Sicilia, Miguel-Angel, García-Tejedor, Álvaro J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue 3
container_start_page 699
container_title Journal of information science
container_volume 49
creator Nogales, Alberto
Sicilia, Miguel-Angel
García-Tejedor, Álvaro J
description The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases.
doi_str_mv 10.1177/01655515211018170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823914484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01655515211018170</sage_id><sourcerecordid>2823914484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvA89a83fzZHEtRKxa86Hl5m01KynZTk13Bb29KBQ_i6R3mN_OYIeQW2AJAqXsGUggBogRgUINiZ2QGikMheS3OyeyoF0fgklyltGOMCV3xGXlZ0i7s0Q_U4Gi3IfqEow8DDY5-BoPt1GP0NtEWk-1oFpB21h5obzEOfthS02NK3nkbr8mFwz7Zm587J--PD2-rdbF5fXpeLTeFqYQYC8edQm6F1mWptBKd1DUwpg2T3JlWOqyRMeWkbHMDlVlsc7dWZ4vrQFdzcnfKPcTwMdk0NrswxSG_bMq6rDRwXvNMwYkyMaQUrWsO0e8xfjXAmuNmzZ_Nsmdx8iTc2t_U_w3fhYNqZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823914484</pqid></control><display><type>article</type><title>A domain categorisation of vocabularies based on a deep learning classifier</title><source>SAGE Complete</source><creator>Nogales, Alberto ; Sicilia, Miguel-Angel ; García-Tejedor, Álvaro J</creator><creatorcontrib>Nogales, Alberto ; Sicilia, Miguel-Angel ; García-Tejedor, Álvaro J</creatorcontrib><description>The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/01655515211018170</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial neural networks ; Classifiers ; Deep learning ; Domains ; Linked Data ; Machine learning ; Neural networks ; Ontology ; Open data ; Recurrent neural networks ; Vocabularies &amp; taxonomies</subject><ispartof>Journal of information science, 2023-06, Vol.49 (3), p.699-710</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</citedby><cites>FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</cites><orcidid>0000-0003-4951-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01655515211018170$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01655515211018170$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Nogales, Alberto</creatorcontrib><creatorcontrib>Sicilia, Miguel-Angel</creatorcontrib><creatorcontrib>García-Tejedor, Álvaro J</creatorcontrib><title>A domain categorisation of vocabularies based on a deep learning classifier</title><title>Journal of information science</title><description>The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases.</description><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Linked Data</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Open data</subject><subject>Recurrent neural networks</subject><subject>Vocabularies &amp; taxonomies</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwFvA89a83fzZHEtRKxa86Hl5m01KynZTk13Bb29KBQ_i6R3mN_OYIeQW2AJAqXsGUggBogRgUINiZ2QGikMheS3OyeyoF0fgklyltGOMCV3xGXlZ0i7s0Q_U4Gi3IfqEow8DDY5-BoPt1GP0NtEWk-1oFpB21h5obzEOfthS02NK3nkbr8mFwz7Zm587J--PD2-rdbF5fXpeLTeFqYQYC8edQm6F1mWptBKd1DUwpg2T3JlWOqyRMeWkbHMDlVlsc7dWZ4vrQFdzcnfKPcTwMdk0NrswxSG_bMq6rDRwXvNMwYkyMaQUrWsO0e8xfjXAmuNmzZ_Nsmdx8iTc2t_U_w3fhYNqZw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Nogales, Alberto</creator><creator>Sicilia, Miguel-Angel</creator><creator>García-Tejedor, Álvaro J</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4951-8102</orcidid></search><sort><creationdate>202306</creationdate><title>A domain categorisation of vocabularies based on a deep learning classifier</title><author>Nogales, Alberto ; Sicilia, Miguel-Angel ; García-Tejedor, Álvaro J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Linked Data</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Open data</topic><topic>Recurrent neural networks</topic><topic>Vocabularies &amp; taxonomies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogales, Alberto</creatorcontrib><creatorcontrib>Sicilia, Miguel-Angel</creatorcontrib><creatorcontrib>García-Tejedor, Álvaro J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogales, Alberto</au><au>Sicilia, Miguel-Angel</au><au>García-Tejedor, Álvaro J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A domain categorisation of vocabularies based on a deep learning classifier</atitle><jtitle>Journal of information science</jtitle><date>2023-06</date><risdate>2023</risdate><volume>49</volume><issue>3</issue><spage>699</spage><epage>710</epage><pages>699-710</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><abstract>The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01655515211018170</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4951-8102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-5515
ispartof Journal of information science, 2023-06, Vol.49 (3), p.699-710
issn 0165-5515
1741-6485
language eng
recordid cdi_proquest_journals_2823914484
source SAGE Complete
subjects Artificial neural networks
Classifiers
Deep learning
Domains
Linked Data
Machine learning
Neural networks
Ontology
Open data
Recurrent neural networks
Vocabularies & taxonomies
title A domain categorisation of vocabularies based on a deep learning classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20domain%20categorisation%20of%20vocabularies%20based%20on%20a%20deep%20learning%20classifier&rft.jtitle=Journal%20of%20information%20science&rft.au=Nogales,%20Alberto&rft.date=2023-06&rft.volume=49&rft.issue=3&rft.spage=699&rft.epage=710&rft.pages=699-710&rft.issn=0165-5515&rft.eissn=1741-6485&rft_id=info:doi/10.1177/01655515211018170&rft_dat=%3Cproquest_cross%3E2823914484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823914484&rft_id=info:pmid/&rft_sage_id=10.1177_01655515211018170&rfr_iscdi=true