A domain categorisation of vocabularies based on a deep learning classifier
The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This informat...
Gespeichert in:
Veröffentlicht in: | Journal of information science 2023-06, Vol.49 (3), p.699-710 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 710 |
---|---|
container_issue | 3 |
container_start_page | 699 |
container_title | Journal of information science |
container_volume | 49 |
creator | Nogales, Alberto Sicilia, Miguel-Angel García-Tejedor, Álvaro J |
description | The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases. |
doi_str_mv | 10.1177/01655515211018170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823914484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01655515211018170</sage_id><sourcerecordid>2823914484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvA89a83fzZHEtRKxa86Hl5m01KynZTk13Bb29KBQ_i6R3mN_OYIeQW2AJAqXsGUggBogRgUINiZ2QGikMheS3OyeyoF0fgklyltGOMCV3xGXlZ0i7s0Q_U4Gi3IfqEow8DDY5-BoPt1GP0NtEWk-1oFpB21h5obzEOfthS02NK3nkbr8mFwz7Zm587J--PD2-rdbF5fXpeLTeFqYQYC8edQm6F1mWptBKd1DUwpg2T3JlWOqyRMeWkbHMDlVlsc7dWZ4vrQFdzcnfKPcTwMdk0NrswxSG_bMq6rDRwXvNMwYkyMaQUrWsO0e8xfjXAmuNmzZ_Nsmdx8iTc2t_U_w3fhYNqZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823914484</pqid></control><display><type>article</type><title>A domain categorisation of vocabularies based on a deep learning classifier</title><source>SAGE Complete</source><creator>Nogales, Alberto ; Sicilia, Miguel-Angel ; García-Tejedor, Álvaro J</creator><creatorcontrib>Nogales, Alberto ; Sicilia, Miguel-Angel ; García-Tejedor, Álvaro J</creatorcontrib><description>The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/01655515211018170</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial neural networks ; Classifiers ; Deep learning ; Domains ; Linked Data ; Machine learning ; Neural networks ; Ontology ; Open data ; Recurrent neural networks ; Vocabularies & taxonomies</subject><ispartof>Journal of information science, 2023-06, Vol.49 (3), p.699-710</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</citedby><cites>FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</cites><orcidid>0000-0003-4951-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01655515211018170$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01655515211018170$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Nogales, Alberto</creatorcontrib><creatorcontrib>Sicilia, Miguel-Angel</creatorcontrib><creatorcontrib>García-Tejedor, Álvaro J</creatorcontrib><title>A domain categorisation of vocabularies based on a deep learning classifier</title><title>Journal of information science</title><description>The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases.</description><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Linked Data</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Ontology</subject><subject>Open data</subject><subject>Recurrent neural networks</subject><subject>Vocabularies & taxonomies</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwFvA89a83fzZHEtRKxa86Hl5m01KynZTk13Bb29KBQ_i6R3mN_OYIeQW2AJAqXsGUggBogRgUINiZ2QGikMheS3OyeyoF0fgklyltGOMCV3xGXlZ0i7s0Q_U4Gi3IfqEow8DDY5-BoPt1GP0NtEWk-1oFpB21h5obzEOfthS02NK3nkbr8mFwz7Zm587J--PD2-rdbF5fXpeLTeFqYQYC8edQm6F1mWptBKd1DUwpg2T3JlWOqyRMeWkbHMDlVlsc7dWZ4vrQFdzcnfKPcTwMdk0NrswxSG_bMq6rDRwXvNMwYkyMaQUrWsO0e8xfjXAmuNmzZ_Nsmdx8iTc2t_U_w3fhYNqZw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Nogales, Alberto</creator><creator>Sicilia, Miguel-Angel</creator><creator>García-Tejedor, Álvaro J</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4951-8102</orcidid></search><sort><creationdate>202306</creationdate><title>A domain categorisation of vocabularies based on a deep learning classifier</title><author>Nogales, Alberto ; Sicilia, Miguel-Angel ; García-Tejedor, Álvaro J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f4f7a4e599227975d6981009c064fcb6fa8a007f66b17477a4ab555b9e59fd193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Linked Data</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Ontology</topic><topic>Open data</topic><topic>Recurrent neural networks</topic><topic>Vocabularies & taxonomies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nogales, Alberto</creatorcontrib><creatorcontrib>Sicilia, Miguel-Angel</creatorcontrib><creatorcontrib>García-Tejedor, Álvaro J</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nogales, Alberto</au><au>Sicilia, Miguel-Angel</au><au>García-Tejedor, Álvaro J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A domain categorisation of vocabularies based on a deep learning classifier</atitle><jtitle>Journal of information science</jtitle><date>2023-06</date><risdate>2023</risdate><volume>49</volume><issue>3</issue><spage>699</spage><epage>710</epage><pages>699-710</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><abstract>The publication of large amounts of open data is an increasing trend. This is a consequence of initiatives like Linked Open Data (LOD) that aims at publishing and linking data sets published in the World Wide Web. Linked Data publishers should follow a set of principles for their task. This information is described in a 2011 document that includes the consideration of reusing vocabularies as key. The Linked Open Vocabularies (LOV) project attempts to collect the vocabularies and ontologies commonly used in LOD. These ontologies have been classified by domain following the criteria of LOV members, thus having the disadvantage of introducing personal biases. This article presents an automatic classifier of ontologies based on the main categories appearing in Wikipedia. For that purpose, word-embedding models are used in combination with deep learning techniques. Results show that with a hybrid model of regular Deep Neural Networks (DNNs), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN), classification could be made with an accuracy of 93.57%. A further evaluation of the domain matchings between LOV and the classifier brings possible matchings in 79.8% of the cases.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01655515211018170</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4951-8102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-5515 |
ispartof | Journal of information science, 2023-06, Vol.49 (3), p.699-710 |
issn | 0165-5515 1741-6485 |
language | eng |
recordid | cdi_proquest_journals_2823914484 |
source | SAGE Complete |
subjects | Artificial neural networks Classifiers Deep learning Domains Linked Data Machine learning Neural networks Ontology Open data Recurrent neural networks Vocabularies & taxonomies |
title | A domain categorisation of vocabularies based on a deep learning classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20domain%20categorisation%20of%20vocabularies%20based%20on%20a%20deep%20learning%20classifier&rft.jtitle=Journal%20of%20information%20science&rft.au=Nogales,%20Alberto&rft.date=2023-06&rft.volume=49&rft.issue=3&rft.spage=699&rft.epage=710&rft.pages=699-710&rft.issn=0165-5515&rft.eissn=1741-6485&rft_id=info:doi/10.1177/01655515211018170&rft_dat=%3Cproquest_cross%3E2823914484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823914484&rft_id=info:pmid/&rft_sage_id=10.1177_01655515211018170&rfr_iscdi=true |