Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems
Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bi...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-06, Vol.13 (22), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Chen, Ding Bai, Huawei Zhu, Jiawei Wu, Can Zhao, Hongyu Wu, Dulan Jiao, Jixiang Ji, Pengxia Mu, Shichun |
description | Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system.
NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems. |
doi_str_mv | 10.1002/aenm.202300499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823857679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823857679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEElXpymyJueUcu0k8VlVpkcofqSDGyEkuxShNytkBZWNn4TPySXApgpHF9vn93jvpBcEphxEHCM811ptRCKEAkEodBD0ecTmMEgmHv28RHgcDa58AdhAHIXrB-1VbOWNzXSFbGCRN-aPxE1s5anPXEhbs2kybWzardVaZes0mmy0Sfr59LPEFK_agHRJbbSvj3E4uG2LfoZ5Y5VhrMo1lc0KsfQbSuvOCa_yx6Apq1v571VmHG3sSHJW6sjj4ufvB_cXsbroYLm_ml9PJcpgLHqshIpRKygJhDLzkPAKUUIgwKQuVlFKrWGmhZBZixjGCTOVSahwnURZL0IKLfnC2z91S89yidelT01LtV6ZhEopkHEex8tRoT-XUWEtYplsyG01dyiHddZ7uOk9_O_cGtTe8mgq7f-h0Mru--vN-AcJui0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823857679</pqid></control><display><type>article</type><title>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</title><source>Wiley Online Library All Journals</source><creator>Chen, Ding ; Bai, Huawei ; Zhu, Jiawei ; Wu, Can ; Zhao, Hongyu ; Wu, Dulan ; Jiao, Jixiang ; Ji, Pengxia ; Mu, Shichun</creator><creatorcontrib>Chen, Ding ; Bai, Huawei ; Zhu, Jiawei ; Wu, Can ; Zhao, Hongyu ; Wu, Dulan ; Jiao, Jixiang ; Ji, Pengxia ; Mu, Shichun</creatorcontrib><description>Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system.
NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300499</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alternative energy ; bimetallic phosphides ; Bimetals ; Catalysts ; Clean energy ; Electrolysis ; Electrolytic cells ; green energy‐to‐hydrogen system ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; Industrial water ; Lithium ; Metal foams ; Microstructure ; Nickel ; Noble metals ; Phosphides ; Renewable energy ; structural modulation ; Substrates ; Water splitting</subject><ispartof>Advanced energy materials, 2023-06, Vol.13 (22), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</citedby><cites>FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</cites><orcidid>0000-0003-3902-0976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300499$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300499$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Ding</creatorcontrib><creatorcontrib>Bai, Huawei</creatorcontrib><creatorcontrib>Zhu, Jiawei</creatorcontrib><creatorcontrib>Wu, Can</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Wu, Dulan</creatorcontrib><creatorcontrib>Jiao, Jixiang</creatorcontrib><creatorcontrib>Ji, Pengxia</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><title>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</title><title>Advanced energy materials</title><description>Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system.
NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems.</description><subject>Alternative energy</subject><subject>bimetallic phosphides</subject><subject>Bimetals</subject><subject>Catalysts</subject><subject>Clean energy</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>green energy‐to‐hydrogen system</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Industrial water</subject><subject>Lithium</subject><subject>Metal foams</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Phosphides</subject><subject>Renewable energy</subject><subject>structural modulation</subject><subject>Substrates</subject><subject>Water splitting</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEElXpymyJueUcu0k8VlVpkcofqSDGyEkuxShNytkBZWNn4TPySXApgpHF9vn93jvpBcEphxEHCM811ptRCKEAkEodBD0ecTmMEgmHv28RHgcDa58AdhAHIXrB-1VbOWNzXSFbGCRN-aPxE1s5anPXEhbs2kybWzardVaZes0mmy0Sfr59LPEFK_agHRJbbSvj3E4uG2LfoZ5Y5VhrMo1lc0KsfQbSuvOCa_yx6Apq1v571VmHG3sSHJW6sjj4ufvB_cXsbroYLm_ml9PJcpgLHqshIpRKygJhDLzkPAKUUIgwKQuVlFKrWGmhZBZixjGCTOVSahwnURZL0IKLfnC2z91S89yidelT01LtV6ZhEopkHEex8tRoT-XUWEtYplsyG01dyiHddZ7uOk9_O_cGtTe8mgq7f-h0Mru--vN-AcJui0o</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chen, Ding</creator><creator>Bai, Huawei</creator><creator>Zhu, Jiawei</creator><creator>Wu, Can</creator><creator>Zhao, Hongyu</creator><creator>Wu, Dulan</creator><creator>Jiao, Jixiang</creator><creator>Ji, Pengxia</creator><creator>Mu, Shichun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></search><sort><creationdate>20230601</creationdate><title>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</title><author>Chen, Ding ; Bai, Huawei ; Zhu, Jiawei ; Wu, Can ; Zhao, Hongyu ; Wu, Dulan ; Jiao, Jixiang ; Ji, Pengxia ; Mu, Shichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy</topic><topic>bimetallic phosphides</topic><topic>Bimetals</topic><topic>Catalysts</topic><topic>Clean energy</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>green energy‐to‐hydrogen system</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Industrial water</topic><topic>Lithium</topic><topic>Metal foams</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Phosphides</topic><topic>Renewable energy</topic><topic>structural modulation</topic><topic>Substrates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ding</creatorcontrib><creatorcontrib>Bai, Huawei</creatorcontrib><creatorcontrib>Zhu, Jiawei</creatorcontrib><creatorcontrib>Wu, Can</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Wu, Dulan</creatorcontrib><creatorcontrib>Jiao, Jixiang</creatorcontrib><creatorcontrib>Ji, Pengxia</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ding</au><au>Bai, Huawei</au><au>Zhu, Jiawei</au><au>Wu, Can</au><au>Zhao, Hongyu</au><au>Wu, Dulan</au><au>Jiao, Jixiang</au><au>Ji, Pengxia</au><au>Mu, Shichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</atitle><jtitle>Advanced energy materials</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>13</volume><issue>22</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system.
NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300499</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-06, Vol.13 (22), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2823857679 |
source | Wiley Online Library All Journals |
subjects | Alternative energy bimetallic phosphides Bimetals Catalysts Clean energy Electrolysis Electrolytic cells green energy‐to‐hydrogen system Hydrogen Hydrogen evolution reactions Hydrogen production Industrial water Lithium Metal foams Microstructure Nickel Noble metals Phosphides Renewable energy structural modulation Substrates Water splitting |
title | Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Hierarchical%20Structured%20NiCoP%20Enabling%20Ampere%E2%80%90Level%20Water%20Splitting%20for%20Multi%E2%80%90Scenarios%20Green%20Energy%E2%80%90to%E2%80%90Hydrogen%20Systems&rft.jtitle=Advanced%20energy%20materials&rft.au=Chen,%20Ding&rft.date=2023-06-01&rft.volume=13&rft.issue=22&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300499&rft_dat=%3Cproquest_cross%3E2823857679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823857679&rft_id=info:pmid/&rfr_iscdi=true |