Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems

Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-06, Vol.13 (22), p.n/a
Hauptverfasser: Chen, Ding, Bai, Huawei, Zhu, Jiawei, Wu, Can, Zhao, Hongyu, Wu, Dulan, Jiao, Jixiang, Ji, Pengxia, Mu, Shichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced energy materials
container_volume 13
creator Chen, Ding
Bai, Huawei
Zhu, Jiawei
Wu, Can
Zhao, Hongyu
Wu, Dulan
Jiao, Jixiang
Ji, Pengxia
Mu, Shichun
description Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system. NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems.
doi_str_mv 10.1002/aenm.202300499
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823857679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823857679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxSMEElXpymyJueUcu0k8VlVpkcofqSDGyEkuxShNytkBZWNn4TPySXApgpHF9vn93jvpBcEphxEHCM811ptRCKEAkEodBD0ecTmMEgmHv28RHgcDa58AdhAHIXrB-1VbOWNzXSFbGCRN-aPxE1s5anPXEhbs2kybWzardVaZes0mmy0Sfr59LPEFK_agHRJbbSvj3E4uG2LfoZ5Y5VhrMo1lc0KsfQbSuvOCa_yx6Apq1v571VmHG3sSHJW6sjj4ufvB_cXsbroYLm_ml9PJcpgLHqshIpRKygJhDLzkPAKUUIgwKQuVlFKrWGmhZBZixjGCTOVSahwnURZL0IKLfnC2z91S89yidelT01LtV6ZhEopkHEex8tRoT-XUWEtYplsyG01dyiHddZ7uOk9_O_cGtTe8mgq7f-h0Mru--vN-AcJui0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823857679</pqid></control><display><type>article</type><title>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</title><source>Wiley Online Library All Journals</source><creator>Chen, Ding ; Bai, Huawei ; Zhu, Jiawei ; Wu, Can ; Zhao, Hongyu ; Wu, Dulan ; Jiao, Jixiang ; Ji, Pengxia ; Mu, Shichun</creator><creatorcontrib>Chen, Ding ; Bai, Huawei ; Zhu, Jiawei ; Wu, Can ; Zhao, Hongyu ; Wu, Dulan ; Jiao, Jixiang ; Ji, Pengxia ; Mu, Shichun</creatorcontrib><description>Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system. NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300499</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alternative energy ; bimetallic phosphides ; Bimetals ; Catalysts ; Clean energy ; Electrolysis ; Electrolytic cells ; green energy‐to‐hydrogen system ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; Industrial water ; Lithium ; Metal foams ; Microstructure ; Nickel ; Noble metals ; Phosphides ; Renewable energy ; structural modulation ; Substrates ; Water splitting</subject><ispartof>Advanced energy materials, 2023-06, Vol.13 (22), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</citedby><cites>FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</cites><orcidid>0000-0003-3902-0976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300499$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300499$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Ding</creatorcontrib><creatorcontrib>Bai, Huawei</creatorcontrib><creatorcontrib>Zhu, Jiawei</creatorcontrib><creatorcontrib>Wu, Can</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Wu, Dulan</creatorcontrib><creatorcontrib>Jiao, Jixiang</creatorcontrib><creatorcontrib>Ji, Pengxia</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><title>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</title><title>Advanced energy materials</title><description>Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system. NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems.</description><subject>Alternative energy</subject><subject>bimetallic phosphides</subject><subject>Bimetals</subject><subject>Catalysts</subject><subject>Clean energy</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>green energy‐to‐hydrogen system</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Industrial water</subject><subject>Lithium</subject><subject>Metal foams</subject><subject>Microstructure</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Phosphides</subject><subject>Renewable energy</subject><subject>structural modulation</subject><subject>Substrates</subject><subject>Water splitting</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxSMEElXpymyJueUcu0k8VlVpkcofqSDGyEkuxShNytkBZWNn4TPySXApgpHF9vn93jvpBcEphxEHCM811ptRCKEAkEodBD0ecTmMEgmHv28RHgcDa58AdhAHIXrB-1VbOWNzXSFbGCRN-aPxE1s5anPXEhbs2kybWzardVaZes0mmy0Sfr59LPEFK_agHRJbbSvj3E4uG2LfoZ5Y5VhrMo1lc0KsfQbSuvOCa_yx6Apq1v571VmHG3sSHJW6sjj4ufvB_cXsbroYLm_ml9PJcpgLHqshIpRKygJhDLzkPAKUUIgwKQuVlFKrWGmhZBZixjGCTOVSahwnURZL0IKLfnC2z91S89yidelT01LtV6ZhEopkHEex8tRoT-XUWEtYplsyG01dyiHddZ7uOk9_O_cGtTe8mgq7f-h0Mru--vN-AcJui0o</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Chen, Ding</creator><creator>Bai, Huawei</creator><creator>Zhu, Jiawei</creator><creator>Wu, Can</creator><creator>Zhao, Hongyu</creator><creator>Wu, Dulan</creator><creator>Jiao, Jixiang</creator><creator>Ji, Pengxia</creator><creator>Mu, Shichun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></search><sort><creationdate>20230601</creationdate><title>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</title><author>Chen, Ding ; Bai, Huawei ; Zhu, Jiawei ; Wu, Can ; Zhao, Hongyu ; Wu, Dulan ; Jiao, Jixiang ; Ji, Pengxia ; Mu, Shichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-ee0f944de0501f1160e40d328fd98f4a979a394b2eb1e60b9c44ae586b740a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternative energy</topic><topic>bimetallic phosphides</topic><topic>Bimetals</topic><topic>Catalysts</topic><topic>Clean energy</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>green energy‐to‐hydrogen system</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Industrial water</topic><topic>Lithium</topic><topic>Metal foams</topic><topic>Microstructure</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Phosphides</topic><topic>Renewable energy</topic><topic>structural modulation</topic><topic>Substrates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ding</creatorcontrib><creatorcontrib>Bai, Huawei</creatorcontrib><creatorcontrib>Zhu, Jiawei</creatorcontrib><creatorcontrib>Wu, Can</creatorcontrib><creatorcontrib>Zhao, Hongyu</creatorcontrib><creatorcontrib>Wu, Dulan</creatorcontrib><creatorcontrib>Jiao, Jixiang</creatorcontrib><creatorcontrib>Ji, Pengxia</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ding</au><au>Bai, Huawei</au><au>Zhu, Jiawei</au><au>Wu, Can</au><au>Zhao, Hongyu</au><au>Wu, Dulan</au><au>Jiao, Jixiang</au><au>Ji, Pengxia</au><au>Mu, Shichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems</atitle><jtitle>Advanced energy materials</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>13</volume><issue>22</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Efficient and stable low‐cost catalysts are seriously lacking for industrial water electrolysis at large‐current‐density. To meet industrial‐scale hydrogen production, fully utilized active sites by a rational structure design is an attractive route. Herein, dynamic microstructure manipulation of bimetallic phosphide NiCoP is conducted. Among different microstructures for NiCoP, as‐obtained NiCoP‐120 at hydrothermal temperature of 120 °C, shows a special multiscale hierarchical structure from 3D‐nickel foam substrates, 2D‐nanosheets to 1D‐nanoneedles, which is conducive to efficient utilization of active sites and rapid gas release, thus manifesting outstanding electrocatalytic activities and stability as required by industry. To reach a current density of 10 and 1000 mA cm−2 for the hydrogen evolution reaction (HER), NiCoP‐120 requires ultra‐low overpotentials of 56 and 247 mV, respectively. Particularly, as a bifunctional catalyst, it only needs 1.981 V to drive the 1 A cm−2 overall water splitting and can maintain stable output for 600 h, which is superior to almost all reported non‐noble metal catalysts. Moreover, its application prospect in integrated green energy‐to‐hydrogen systems, including sunlight, wind, thermal, and lithium cells, is well demonstrated. This work provides a guiding strategy for the design of industrial water electrolysis catalysts and the establishment of an externally driven water‐splitting hydrogen production system. NiCoP, with a unique multiscale hierarchical structure that integrates 3D‐nickel foam substrates, 2D‐nanosheets, and 1D‐nanoneedles, enables efficient and stable Ampere‐level water splitting for multi‐scenarios green energy‐to‐hydrogen systems.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300499</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3902-0976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-06, Vol.13 (22), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2823857679
source Wiley Online Library All Journals
subjects Alternative energy
bimetallic phosphides
Bimetals
Catalysts
Clean energy
Electrolysis
Electrolytic cells
green energy‐to‐hydrogen system
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Industrial water
Lithium
Metal foams
Microstructure
Nickel
Noble metals
Phosphides
Renewable energy
structural modulation
Substrates
Water splitting
title Multiscale Hierarchical Structured NiCoP Enabling Ampere‐Level Water Splitting for Multi‐Scenarios Green Energy‐to‐Hydrogen Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Hierarchical%20Structured%20NiCoP%20Enabling%20Ampere%E2%80%90Level%20Water%20Splitting%20for%20Multi%E2%80%90Scenarios%20Green%20Energy%E2%80%90to%E2%80%90Hydrogen%20Systems&rft.jtitle=Advanced%20energy%20materials&rft.au=Chen,%20Ding&rft.date=2023-06-01&rft.volume=13&rft.issue=22&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300499&rft_dat=%3Cproquest_cross%3E2823857679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823857679&rft_id=info:pmid/&rfr_iscdi=true