Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory
Guaranteeing safe behaviour of reinforcement learning (RL) policies poses significant challenges for safety-critical applications, despite RL's generality and scalability. To address this, we propose a new approach to apply verification methods from control theory to learned value functions. By...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tan, Daniel C H Acero, Fernando McCarthy, Robert Kanoulas, Dimitrios Li, Zhibin |
description | Guaranteeing safe behaviour of reinforcement learning (RL) policies poses significant challenges for safety-critical applications, despite RL's generality and scalability. To address this, we propose a new approach to apply verification methods from control theory to learned value functions. By analyzing task structures for safety preservation, we formalize original theorems that establish links between value functions and control barrier functions. Further, we propose novel metrics for verifying value functions in safe control tasks and practical implementation details to improve learning. Our work presents a novel method for certificate learning, which unlocks a diversity of verification techniques from control theory for RL policies, and marks a significant step towards a formal framework for the general, scalable, and verifiable design of RL-based control systems. Code and videos are available at this https url: https://rl-cbf.github.io/ |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2823796625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823796625</sourcerecordid><originalsourceid>FETCH-proquest_journals_28237966253</originalsourceid><addsrcrecordid>eNqNi8sKwjAQRYMgWLT_MOC6UCf2oUuLxaVgcVtCmWhKSXTSLPx7FUS3rg6Xc89ERCjlKinXiDMRe9-naYp5gVkmI6HOaggEdbDdaJz1oJigcnZkN8BOMRvin93Cmdho06n3BKfhpDTB0Q2mM-QheGMv37y5kuPHQky1GjzFH87Fst431SG5sbsH8mPbu8D2pVosURabPMdM_vd6Ai3_RUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823796625</pqid></control><display><type>article</type><title>Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory</title><source>Free E- Journals</source><creator>Tan, Daniel C H ; Acero, Fernando ; McCarthy, Robert ; Kanoulas, Dimitrios ; Li, Zhibin</creator><creatorcontrib>Tan, Daniel C H ; Acero, Fernando ; McCarthy, Robert ; Kanoulas, Dimitrios ; Li, Zhibin</creatorcontrib><description>Guaranteeing safe behaviour of reinforcement learning (RL) policies poses significant challenges for safety-critical applications, despite RL's generality and scalability. To address this, we propose a new approach to apply verification methods from control theory to learned value functions. By analyzing task structures for safety preservation, we formalize original theorems that establish links between value functions and control barrier functions. Further, we propose novel metrics for verifying value functions in safe control tasks and practical implementation details to improve learning. Our work presents a novel method for certificate learning, which unlocks a diversity of verification techniques from control theory for RL policies, and marks a significant step towards a formal framework for the general, scalable, and verifiable design of RL-based control systems. Code and videos are available at this https url: https://rl-cbf.github.io/</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Control systems design ; Control tasks ; Control theory ; Learning ; Policies ; Safety critical ; Verification</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tan, Daniel C H</creatorcontrib><creatorcontrib>Acero, Fernando</creatorcontrib><creatorcontrib>McCarthy, Robert</creatorcontrib><creatorcontrib>Kanoulas, Dimitrios</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><title>Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory</title><title>arXiv.org</title><description>Guaranteeing safe behaviour of reinforcement learning (RL) policies poses significant challenges for safety-critical applications, despite RL's generality and scalability. To address this, we propose a new approach to apply verification methods from control theory to learned value functions. By analyzing task structures for safety preservation, we formalize original theorems that establish links between value functions and control barrier functions. Further, we propose novel metrics for verifying value functions in safe control tasks and practical implementation details to improve learning. Our work presents a novel method for certificate learning, which unlocks a diversity of verification techniques from control theory for RL policies, and marks a significant step towards a formal framework for the general, scalable, and verifiable design of RL-based control systems. Code and videos are available at this https url: https://rl-cbf.github.io/</description><subject>Control systems design</subject><subject>Control tasks</subject><subject>Control theory</subject><subject>Learning</subject><subject>Policies</subject><subject>Safety critical</subject><subject>Verification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8sKwjAQRYMgWLT_MOC6UCf2oUuLxaVgcVtCmWhKSXTSLPx7FUS3rg6Xc89ERCjlKinXiDMRe9-naYp5gVkmI6HOaggEdbDdaJz1oJigcnZkN8BOMRvin93Cmdho06n3BKfhpDTB0Q2mM-QheGMv37y5kuPHQky1GjzFH87Fst431SG5sbsH8mPbu8D2pVosURabPMdM_vd6Ai3_RUQ</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Tan, Daniel C H</creator><creator>Acero, Fernando</creator><creator>McCarthy, Robert</creator><creator>Kanoulas, Dimitrios</creator><creator>Li, Zhibin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231205</creationdate><title>Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory</title><author>Tan, Daniel C H ; Acero, Fernando ; McCarthy, Robert ; Kanoulas, Dimitrios ; Li, Zhibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28237966253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control systems design</topic><topic>Control tasks</topic><topic>Control theory</topic><topic>Learning</topic><topic>Policies</topic><topic>Safety critical</topic><topic>Verification</topic><toplevel>online_resources</toplevel><creatorcontrib>Tan, Daniel C H</creatorcontrib><creatorcontrib>Acero, Fernando</creatorcontrib><creatorcontrib>McCarthy, Robert</creatorcontrib><creatorcontrib>Kanoulas, Dimitrios</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Daniel C H</au><au>Acero, Fernando</au><au>McCarthy, Robert</au><au>Kanoulas, Dimitrios</au><au>Li, Zhibin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory</atitle><jtitle>arXiv.org</jtitle><date>2023-12-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Guaranteeing safe behaviour of reinforcement learning (RL) policies poses significant challenges for safety-critical applications, despite RL's generality and scalability. To address this, we propose a new approach to apply verification methods from control theory to learned value functions. By analyzing task structures for safety preservation, we formalize original theorems that establish links between value functions and control barrier functions. Further, we propose novel metrics for verifying value functions in safe control tasks and practical implementation details to improve learning. Our work presents a novel method for certificate learning, which unlocks a diversity of verification techniques from control theory for RL policies, and marks a significant step towards a formal framework for the general, scalable, and verifiable design of RL-based control systems. Code and videos are available at this https url: https://rl-cbf.github.io/</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2823796625 |
source | Free E- Journals |
subjects | Control systems design Control tasks Control theory Learning Policies Safety critical Verification |
title | Value Functions are Control Barrier Functions: Verification of Safe Policies using Control Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Value%20Functions%20are%20Control%20Barrier%20Functions:%20Verification%20of%20Safe%20Policies%20using%20Control%20Theory&rft.jtitle=arXiv.org&rft.au=Tan,%20Daniel%20C%20H&rft.date=2023-12-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2823796625%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823796625&rft_id=info:pmid/&rfr_iscdi=true |