Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity
Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2819 |
creator | Yadav, Sangita Mishra, Soumyarani Pany, Ambit K. |
description | Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach. |
doi_str_mv | 10.1063/5.0141014 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2823742181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823742181</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-d8c3477436bb9a8ea5a5ed8666d2acbff9e636b914752cca0cc62efa686e7ff33</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgTpiav0kyS6v1BwoKKrgLmUxip04n00ympTtfw9fzSRxtwZ2Ly1nc79zLOQCcYjTCiNOLdIQww_3sgQFOU5wIjvk-GCCUsYQw-noIjtp2jhDJhJAD8DjW5n2tQwEnXWUDXNg48wV0PkByDZ987iu7gnbZ6Vj6Gq7LOIPjLrzZ0H59fMK4aSysfZ1UZW11KOPmGBw4XbX2ZKdD8HIzeb66S6YPt_dXl9OkwVzGpJCGMiEY5XmeaWl1qlNbSM55QbTJncss73cZZiIlxmhkDCfWaS65Fc5ROgRn27tN8MvOtlHNfRfq_qUiklDBCJa4p863VGvK-BtBNaFc6LBRKx9UqnZtqaZw_8EYqZ96_wz0G0PgbXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2823742181</pqid></control><display><type>conference_proceeding</type><title>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</title><source>AIP Journals Complete</source><creator>Yadav, Sangita ; Mishra, Soumyarani ; Pany, Ambit K.</creator><contributor>Dev, Apul Narayan</contributor><creatorcontrib>Yadav, Sangita ; Mishra, Soumyarani ; Pany, Ambit K. ; Dev, Apul Narayan</creatorcontrib><description>Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0141014</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Estimates ; Time dependence</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2819 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0141014$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Dev, Apul Narayan</contributor><creatorcontrib>Yadav, Sangita</creatorcontrib><creatorcontrib>Mishra, Soumyarani</creatorcontrib><creatorcontrib>Pany, Ambit K.</creatorcontrib><title>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</title><title>AIP Conference Proceedings</title><description>Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach.</description><subject>Estimates</subject><subject>Time dependence</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgTpiav0kyS6v1BwoKKrgLmUxip04n00ympTtfw9fzSRxtwZ2Ly1nc79zLOQCcYjTCiNOLdIQww_3sgQFOU5wIjvk-GCCUsYQw-noIjtp2jhDJhJAD8DjW5n2tQwEnXWUDXNg48wV0PkByDZ987iu7gnbZ6Vj6Gq7LOIPjLrzZ0H59fMK4aSysfZ1UZW11KOPmGBw4XbX2ZKdD8HIzeb66S6YPt_dXl9OkwVzGpJCGMiEY5XmeaWl1qlNbSM55QbTJncss73cZZiIlxmhkDCfWaS65Fc5ROgRn27tN8MvOtlHNfRfq_qUiklDBCJa4p863VGvK-BtBNaFc6LBRKx9UqnZtqaZw_8EYqZ96_wz0G0PgbXQ</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Yadav, Sangita</creator><creator>Mishra, Soumyarani</creator><creator>Pany, Ambit K.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230608</creationdate><title>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</title><author>Yadav, Sangita ; Mishra, Soumyarani ; Pany, Ambit K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-d8c3477436bb9a8ea5a5ed8666d2acbff9e636b914752cca0cc62efa686e7ff33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Estimates</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Sangita</creatorcontrib><creatorcontrib>Mishra, Soumyarani</creatorcontrib><creatorcontrib>Pany, Ambit K.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Sangita</au><au>Mishra, Soumyarani</au><au>Pany, Ambit K.</au><au>Dev, Apul Narayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-06-08</date><risdate>2023</risdate><volume>2819</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0141014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2023, Vol.2819 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2823742181 |
source | AIP Journals Complete |
subjects | Estimates Time dependence |
title | Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Backward%20Euler%20method%20for%202D%20Sobolev%20equation%20with%20Burgers%E2%80%99%20type%20non-linearity&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Yadav,%20Sangita&rft.date=2023-06-08&rft.volume=2819&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0141014&rft_dat=%3Cproquest_scita%3E2823742181%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823742181&rft_id=info:pmid/&rfr_iscdi=true |