Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity

Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yadav, Sangita, Mishra, Soumyarani, Pany, Ambit K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2819
creator Yadav, Sangita
Mishra, Soumyarani
Pany, Ambit K.
description Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach.
doi_str_mv 10.1063/5.0141014
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2823742181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823742181</sourcerecordid><originalsourceid>FETCH-LOGICAL-p168t-d8c3477436bb9a8ea5a5ed8666d2acbff9e636b914752cca0cc62efa686e7ff33</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsL3yDgTpiav0kyS6v1BwoKKrgLmUxip04n00ympTtfw9fzSRxtwZ2Ly1nc79zLOQCcYjTCiNOLdIQww_3sgQFOU5wIjvk-GCCUsYQw-noIjtp2jhDJhJAD8DjW5n2tQwEnXWUDXNg48wV0PkByDZ987iu7gnbZ6Vj6Gq7LOIPjLrzZ0H59fMK4aSysfZ1UZW11KOPmGBw4XbX2ZKdD8HIzeb66S6YPt_dXl9OkwVzGpJCGMiEY5XmeaWl1qlNbSM55QbTJncss73cZZiIlxmhkDCfWaS65Fc5ROgRn27tN8MvOtlHNfRfq_qUiklDBCJa4p863VGvK-BtBNaFc6LBRKx9UqnZtqaZw_8EYqZ96_wz0G0PgbXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2823742181</pqid></control><display><type>conference_proceeding</type><title>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</title><source>AIP Journals Complete</source><creator>Yadav, Sangita ; Mishra, Soumyarani ; Pany, Ambit K.</creator><contributor>Dev, Apul Narayan</contributor><creatorcontrib>Yadav, Sangita ; Mishra, Soumyarani ; Pany, Ambit K. ; Dev, Apul Narayan</creatorcontrib><description>Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0141014</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Estimates ; Time dependence</subject><ispartof>AIP Conference Proceedings, 2023, Vol.2819 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0141014$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Dev, Apul Narayan</contributor><creatorcontrib>Yadav, Sangita</creatorcontrib><creatorcontrib>Mishra, Soumyarani</creatorcontrib><creatorcontrib>Pany, Ambit K.</creatorcontrib><title>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</title><title>AIP Conference Proceedings</title><description>Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach.</description><subject>Estimates</subject><subject>Time dependence</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEUhYMoWKsL3yDgTpiav0kyS6v1BwoKKrgLmUxip04n00ympTtfw9fzSRxtwZ2Ly1nc79zLOQCcYjTCiNOLdIQww_3sgQFOU5wIjvk-GCCUsYQw-noIjtp2jhDJhJAD8DjW5n2tQwEnXWUDXNg48wV0PkByDZ987iu7gnbZ6Vj6Gq7LOIPjLrzZ0H59fMK4aSysfZ1UZW11KOPmGBw4XbX2ZKdD8HIzeb66S6YPt_dXl9OkwVzGpJCGMiEY5XmeaWl1qlNbSM55QbTJncss73cZZiIlxmhkDCfWaS65Fc5ROgRn27tN8MvOtlHNfRfq_qUiklDBCJa4p863VGvK-BtBNaFc6LBRKx9UqnZtqaZw_8EYqZ96_wz0G0PgbXQ</recordid><startdate>20230608</startdate><enddate>20230608</enddate><creator>Yadav, Sangita</creator><creator>Mishra, Soumyarani</creator><creator>Pany, Ambit K.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20230608</creationdate><title>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</title><author>Yadav, Sangita ; Mishra, Soumyarani ; Pany, Ambit K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p168t-d8c3477436bb9a8ea5a5ed8666d2acbff9e636b914752cca0cc62efa686e7ff33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Estimates</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Sangita</creatorcontrib><creatorcontrib>Mishra, Soumyarani</creatorcontrib><creatorcontrib>Pany, Ambit K.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Sangita</au><au>Mishra, Soumyarani</au><au>Pany, Ambit K.</au><au>Dev, Apul Narayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity</atitle><btitle>AIP Conference Proceedings</btitle><date>2023-06-08</date><risdate>2023</risdate><volume>2819</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Backward Euler for two dimensional Sobolev equation is discussed in this article. We begin by obtaining some basic a priori estimates for the semi-discrete scheme and for the backward Euler approximation. It is proven that these estimations for the discrete scheme are valid uniformly in time using the discrete Gronwall’s Lemma. In addition, the presence of a discrete global attractor is established. Furthermore, optimal a priori error bounds are determined, which are time dependent exponentially. Under the uniqueness condition, these error estimates are demonstrated to be uniform in time. Finally, we establish several numerical examples that validate our theoretical approach.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0141014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2023, Vol.2819 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2823742181
source AIP Journals Complete
subjects Estimates
Time dependence
title Backward Euler method for 2D Sobolev equation with Burgers’ type non-linearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Backward%20Euler%20method%20for%202D%20Sobolev%20equation%20with%20Burgers%E2%80%99%20type%20non-linearity&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Yadav,%20Sangita&rft.date=2023-06-08&rft.volume=2819&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0141014&rft_dat=%3Cproquest_scita%3E2823742181%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823742181&rft_id=info:pmid/&rfr_iscdi=true