Surface modification with lithium-ion conductor Li3PO4 to enhance the electrochemical performance of lithium-rich layered Li1.2Ni0.2Mn0.6O2

Layered lithium-rich oxide materials are regarded as one of the most promising cathode materials. However, inferior cycling stability and poor rate performance hinder their practical application prospect. In this study, Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode materials have been synthesiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2023-06, Vol.29 (6), p.2141-2152
Hauptverfasser: Sun, Ya, Zhang, Xuke, Cheng, Jialuo, Guo, Minghui, Li, Xiaofang, Wang, Chunlei, Sun, Linbing, Yan, Juntao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2152
container_issue 6
container_start_page 2141
container_title Ionics
container_volume 29
creator Sun, Ya
Zhang, Xuke
Cheng, Jialuo
Guo, Minghui
Li, Xiaofang
Wang, Chunlei
Sun, Linbing
Yan, Juntao
description Layered lithium-rich oxide materials are regarded as one of the most promising cathode materials. However, inferior cycling stability and poor rate performance hinder their practical application prospect. In this study, Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode materials have been synthesized by sol–gel method together with a facile liquid-evaporation process. The results suggested that the Li 3 PO 4 coating layer, which could not only facilitate the lithium-ion diffusion rate and accelerate the diffusion kinetics but also act as a protective layer to protect it from corrosion by HF and other side reactions. Density functional theory (DFT) calculations confirmed the essence effect on lithium-ion diffusion coefficient and electronic conductivity. After modifying with an appropriate amount of Li 3 PO 4 , the Li-rich layered oxides showed enhanced electrochemical performance. Especially, the capacity retention of 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 was significantly enhanced from 17.7% of the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 to 73.8%. In terms of rate capabilities, 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 retained capacities of 181.0, 165.9, 128.8, and 107.8 mAh g −1 , while the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 were only 137.4, 109.3, 75.6, and 45.9 mAh g −1 , respectively, at rates of 0.5 C, 1 C, 2 C, and 5 C. Our research findings show that coating with an appropriate amount of lithium-ion conductor material is one of the effective measures to obtain improved performance of Li-rich and Mn-rich layered oxide materials.
doi_str_mv 10.1007/s11581-023-04959-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823645216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823645216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4687f0679160d24cea65125c76f62314651e20652cd303b0e1d1f35c2f2418e23</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EEkvbF-AUqWdvZ8aOnRyrqgWkhUUqnK3gjLuuNvHWSYT6DLx03W4FNy4zmpn__0b6hfiIsEYAezEh1g1KICVBt3Ur1RuxwsaQBGvgrVhBq620oO178WGa7gGMQbIr8ed2yaHzXA2pjyH6bo5prH7HeVftS4nLIJ8XPo394ueUq01U37e6mlPF464bi3PeccV79nNOfsdDYeyrA-eQ8vByT-EvKkdfuN0jZ-4LCdf0LcKavo6wNls6Fe9Ct5_47LWfiJ831z-uPsvN9tOXq8uN9ArbWWrT2ADGtmigJ-25MzVS7a0JhhTqMjGBqcn3CtQvYOwxqNpTII0NkzoR50fuIaeHhafZ3aclj-Wlo4aU0TWhKSo6qnxO05Q5uEOOQ5cfHYJ7Dt0dQ3cldPcSulPFpI6mqYjHO87_0P9xPQH2-oOm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823645216</pqid></control><display><type>article</type><title>Surface modification with lithium-ion conductor Li3PO4 to enhance the electrochemical performance of lithium-rich layered Li1.2Ni0.2Mn0.6O2</title><source>SpringerLink Journals</source><creator>Sun, Ya ; Zhang, Xuke ; Cheng, Jialuo ; Guo, Minghui ; Li, Xiaofang ; Wang, Chunlei ; Sun, Linbing ; Yan, Juntao</creator><creatorcontrib>Sun, Ya ; Zhang, Xuke ; Cheng, Jialuo ; Guo, Minghui ; Li, Xiaofang ; Wang, Chunlei ; Sun, Linbing ; Yan, Juntao</creatorcontrib><description>Layered lithium-rich oxide materials are regarded as one of the most promising cathode materials. However, inferior cycling stability and poor rate performance hinder their practical application prospect. In this study, Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode materials have been synthesized by sol–gel method together with a facile liquid-evaporation process. The results suggested that the Li 3 PO 4 coating layer, which could not only facilitate the lithium-ion diffusion rate and accelerate the diffusion kinetics but also act as a protective layer to protect it from corrosion by HF and other side reactions. Density functional theory (DFT) calculations confirmed the essence effect on lithium-ion diffusion coefficient and electronic conductivity. After modifying with an appropriate amount of Li 3 PO 4 , the Li-rich layered oxides showed enhanced electrochemical performance. Especially, the capacity retention of 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 was significantly enhanced from 17.7% of the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 to 73.8%. In terms of rate capabilities, 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 retained capacities of 181.0, 165.9, 128.8, and 107.8 mAh g −1 , while the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 were only 137.4, 109.3, 75.6, and 45.9 mAh g −1 , respectively, at rates of 0.5 C, 1 C, 2 C, and 5 C. Our research findings show that coating with an appropriate amount of lithium-ion conductor material is one of the effective measures to obtain improved performance of Li-rich and Mn-rich layered oxide materials.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-023-04959-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Cathodes ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Conductors ; Density functional theory ; Diffusion coating ; Diffusion coefficient ; Diffusion effects ; Diffusion layers ; Diffusion rate ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Energy Storage ; Ion diffusion ; Lithium ; Lithium ions ; Optical and Electronic Materials ; Original Paper ; Renewable and Green Energy ; Sol-gel processes</subject><ispartof>Ionics, 2023-06, Vol.29 (6), p.2141-2152</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4687f0679160d24cea65125c76f62314651e20652cd303b0e1d1f35c2f2418e23</citedby><cites>FETCH-LOGICAL-c319t-4687f0679160d24cea65125c76f62314651e20652cd303b0e1d1f35c2f2418e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-023-04959-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-023-04959-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sun, Ya</creatorcontrib><creatorcontrib>Zhang, Xuke</creatorcontrib><creatorcontrib>Cheng, Jialuo</creatorcontrib><creatorcontrib>Guo, Minghui</creatorcontrib><creatorcontrib>Li, Xiaofang</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Sun, Linbing</creatorcontrib><creatorcontrib>Yan, Juntao</creatorcontrib><title>Surface modification with lithium-ion conductor Li3PO4 to enhance the electrochemical performance of lithium-rich layered Li1.2Ni0.2Mn0.6O2</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Layered lithium-rich oxide materials are regarded as one of the most promising cathode materials. However, inferior cycling stability and poor rate performance hinder their practical application prospect. In this study, Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode materials have been synthesized by sol–gel method together with a facile liquid-evaporation process. The results suggested that the Li 3 PO 4 coating layer, which could not only facilitate the lithium-ion diffusion rate and accelerate the diffusion kinetics but also act as a protective layer to protect it from corrosion by HF and other side reactions. Density functional theory (DFT) calculations confirmed the essence effect on lithium-ion diffusion coefficient and electronic conductivity. After modifying with an appropriate amount of Li 3 PO 4 , the Li-rich layered oxides showed enhanced electrochemical performance. Especially, the capacity retention of 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 was significantly enhanced from 17.7% of the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 to 73.8%. In terms of rate capabilities, 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 retained capacities of 181.0, 165.9, 128.8, and 107.8 mAh g −1 , while the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 were only 137.4, 109.3, 75.6, and 45.9 mAh g −1 , respectively, at rates of 0.5 C, 1 C, 2 C, and 5 C. Our research findings show that coating with an appropriate amount of lithium-ion conductor material is one of the effective measures to obtain improved performance of Li-rich and Mn-rich layered oxide materials.</description><subject>Cathodes</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Conductors</subject><subject>Density functional theory</subject><subject>Diffusion coating</subject><subject>Diffusion coefficient</subject><subject>Diffusion effects</subject><subject>Diffusion layers</subject><subject>Diffusion rate</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Ion diffusion</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Renewable and Green Energy</subject><subject>Sol-gel processes</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi0EEkvbF-AUqWdvZ8aOnRyrqgWkhUUqnK3gjLuuNvHWSYT6DLx03W4FNy4zmpn__0b6hfiIsEYAezEh1g1KICVBt3Ur1RuxwsaQBGvgrVhBq620oO178WGa7gGMQbIr8ed2yaHzXA2pjyH6bo5prH7HeVftS4nLIJ8XPo394ueUq01U37e6mlPF464bi3PeccV79nNOfsdDYeyrA-eQ8vByT-EvKkdfuN0jZ-4LCdf0LcKavo6wNls6Fe9Ct5_47LWfiJ831z-uPsvN9tOXq8uN9ArbWWrT2ADGtmigJ-25MzVS7a0JhhTqMjGBqcn3CtQvYOwxqNpTII0NkzoR50fuIaeHhafZ3aclj-Wlo4aU0TWhKSo6qnxO05Q5uEOOQ5cfHYJ7Dt0dQ3cldPcSulPFpI6mqYjHO87_0P9xPQH2-oOm</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sun, Ya</creator><creator>Zhang, Xuke</creator><creator>Cheng, Jialuo</creator><creator>Guo, Minghui</creator><creator>Li, Xiaofang</creator><creator>Wang, Chunlei</creator><creator>Sun, Linbing</creator><creator>Yan, Juntao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Surface modification with lithium-ion conductor Li3PO4 to enhance the electrochemical performance of lithium-rich layered Li1.2Ni0.2Mn0.6O2</title><author>Sun, Ya ; Zhang, Xuke ; Cheng, Jialuo ; Guo, Minghui ; Li, Xiaofang ; Wang, Chunlei ; Sun, Linbing ; Yan, Juntao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4687f0679160d24cea65125c76f62314651e20652cd303b0e1d1f35c2f2418e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathodes</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Conductors</topic><topic>Density functional theory</topic><topic>Diffusion coating</topic><topic>Diffusion coefficient</topic><topic>Diffusion effects</topic><topic>Diffusion layers</topic><topic>Diffusion rate</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Ion diffusion</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Renewable and Green Energy</topic><topic>Sol-gel processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ya</creatorcontrib><creatorcontrib>Zhang, Xuke</creatorcontrib><creatorcontrib>Cheng, Jialuo</creatorcontrib><creatorcontrib>Guo, Minghui</creatorcontrib><creatorcontrib>Li, Xiaofang</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><creatorcontrib>Sun, Linbing</creatorcontrib><creatorcontrib>Yan, Juntao</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ya</au><au>Zhang, Xuke</au><au>Cheng, Jialuo</au><au>Guo, Minghui</au><au>Li, Xiaofang</au><au>Wang, Chunlei</au><au>Sun, Linbing</au><au>Yan, Juntao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface modification with lithium-ion conductor Li3PO4 to enhance the electrochemical performance of lithium-rich layered Li1.2Ni0.2Mn0.6O2</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>29</volume><issue>6</issue><spage>2141</spage><epage>2152</epage><pages>2141-2152</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Layered lithium-rich oxide materials are regarded as one of the most promising cathode materials. However, inferior cycling stability and poor rate performance hinder their practical application prospect. In this study, Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode materials have been synthesized by sol–gel method together with a facile liquid-evaporation process. The results suggested that the Li 3 PO 4 coating layer, which could not only facilitate the lithium-ion diffusion rate and accelerate the diffusion kinetics but also act as a protective layer to protect it from corrosion by HF and other side reactions. Density functional theory (DFT) calculations confirmed the essence effect on lithium-ion diffusion coefficient and electronic conductivity. After modifying with an appropriate amount of Li 3 PO 4 , the Li-rich layered oxides showed enhanced electrochemical performance. Especially, the capacity retention of 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 was significantly enhanced from 17.7% of the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 to 73.8%. In terms of rate capabilities, 5 wt% Li 3 PO 4 -coated Li 1.2 Ni 0.2 Mn 0.6 O 2 retained capacities of 181.0, 165.9, 128.8, and 107.8 mAh g −1 , while the bare Li 1.2 Ni 0.2 Mn 0.6 O 2 were only 137.4, 109.3, 75.6, and 45.9 mAh g −1 , respectively, at rates of 0.5 C, 1 C, 2 C, and 5 C. Our research findings show that coating with an appropriate amount of lithium-ion conductor material is one of the effective measures to obtain improved performance of Li-rich and Mn-rich layered oxide materials.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-023-04959-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2023-06, Vol.29 (6), p.2141-2152
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2823645216
source SpringerLink Journals
subjects Cathodes
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Conductors
Density functional theory
Diffusion coating
Diffusion coefficient
Diffusion effects
Diffusion layers
Diffusion rate
Electrochemical analysis
Electrochemistry
Electrode materials
Energy Storage
Ion diffusion
Lithium
Lithium ions
Optical and Electronic Materials
Original Paper
Renewable and Green Energy
Sol-gel processes
title Surface modification with lithium-ion conductor Li3PO4 to enhance the electrochemical performance of lithium-rich layered Li1.2Ni0.2Mn0.6O2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20modification%20with%20lithium-ion%20conductor%20Li3PO4%20to%20enhance%20the%20electrochemical%20performance%20of%20lithium-rich%20layered%20Li1.2Ni0.2Mn0.6O2&rft.jtitle=Ionics&rft.au=Sun,%20Ya&rft.date=2023-06-01&rft.volume=29&rft.issue=6&rft.spage=2141&rft.epage=2152&rft.pages=2141-2152&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-023-04959-3&rft_dat=%3Cproquest_cross%3E2823645216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823645216&rft_id=info:pmid/&rfr_iscdi=true