Retrieval-based language model adaptation for handwritten Chinese text recognition

In handwritten text recognition, compared to human, computers are far short of linguistic context knowledge, especially domain-matched knowledge. In this paper, we present a novel retrieval-based method to obtain an adaptive language model for offline recognition of unconstrained handwritten Chinese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on document analysis and recognition 2023-06, Vol.26 (2), p.109-119
Hauptverfasser: Hu, Shuying, Wang, Qiufeng, Huang, Kaizhu, Wen, Min, Coenen, Frans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 109
container_title International journal on document analysis and recognition
container_volume 26
creator Hu, Shuying
Wang, Qiufeng
Huang, Kaizhu
Wen, Min
Coenen, Frans
description In handwritten text recognition, compared to human, computers are far short of linguistic context knowledge, especially domain-matched knowledge. In this paper, we present a novel retrieval-based method to obtain an adaptive language model for offline recognition of unconstrained handwritten Chinese texts. The content of handwritten texts to be recognized is varied and usually unknown a priori. Therefore we adopt a two-pass recognition strategy. In the first pass, we utilize a common language model to obtain initial recognition results, which are used to retrieve the related contents from Internet. In the content retrieval, we evaluate different types of semantic representation from BERT output and the traditional TF–IDF representation. Then, we dynamically generate an adaptive language model from these related contents, which will consequently be combined with the common language model and applied in the second-pass recognition. We evaluate the proposed method on two benchmark unconstrained handwriting datasets, namely CASIA-HWDB and ICDAR-2013. Experimental results show that the proposed retrieval-based language model adaptation yields improvements in recognition performance, despite the reduced Internet contents hereby employed.
doi_str_mv 10.1007/s10032-022-00419-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823644199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823644199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-980e1de4a6715761c9b675066dcfbe971a079eb209c85ce8efdc0dbeea2d7ade3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19E82qZZyuALBoRB1yFNbjsdOumYZHz8e6MV3bm4j8U553I_hM4ZvWSUyquYu-CE8ly0YIrwAzRjhRCE17w8_N2FOEYnMW4oZbKS9QytVpBCD69mII2J4PBgfLc3HeDt6GDAxpldMqkfPW7HgNfGu7fQpwQeL9a9hwg4wXvCAezY-f5LeIqOWjNEOPuZc_R8e_O0uCfLx7uHxfWSWMFUIqqmwBwUppKslBWzqqlkSavK2bYBJZmhUkHDqbJ1aaGG1lnqGgDDnTQOxBxdTLm7ML7sISa9GffB55M6Py2qInNQWcUnlQ1jjAFavQv91oQPzaj-Yqcndjqz09_sNM8mMZliFvsOwl_0P65PbDBzVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823644199</pqid></control><display><type>article</type><title>Retrieval-based language model adaptation for handwritten Chinese text recognition</title><source>SpringerNature Journals</source><creator>Hu, Shuying ; Wang, Qiufeng ; Huang, Kaizhu ; Wen, Min ; Coenen, Frans</creator><creatorcontrib>Hu, Shuying ; Wang, Qiufeng ; Huang, Kaizhu ; Wen, Min ; Coenen, Frans</creatorcontrib><description>In handwritten text recognition, compared to human, computers are far short of linguistic context knowledge, especially domain-matched knowledge. In this paper, we present a novel retrieval-based method to obtain an adaptive language model for offline recognition of unconstrained handwritten Chinese texts. The content of handwritten texts to be recognized is varied and usually unknown a priori. Therefore we adopt a two-pass recognition strategy. In the first pass, we utilize a common language model to obtain initial recognition results, which are used to retrieve the related contents from Internet. In the content retrieval, we evaluate different types of semantic representation from BERT output and the traditional TF–IDF representation. Then, we dynamically generate an adaptive language model from these related contents, which will consequently be combined with the common language model and applied in the second-pass recognition. We evaluate the proposed method on two benchmark unconstrained handwriting datasets, namely CASIA-HWDB and ICDAR-2013. Experimental results show that the proposed retrieval-based language model adaptation yields improvements in recognition performance, despite the reduced Internet contents hereby employed.</description><identifier>ISSN: 1433-2833</identifier><identifier>EISSN: 1433-2825</identifier><identifier>DOI: 10.1007/s10032-022-00419-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Computer Science ; Handwriting recognition ; Image Processing and Computer Vision ; Internet ; Language ; Original Paper ; Pattern Recognition ; Representations ; Retrieval ; Texts</subject><ispartof>International journal on document analysis and recognition, 2023-06, Vol.26 (2), p.109-119</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-980e1de4a6715761c9b675066dcfbe971a079eb209c85ce8efdc0dbeea2d7ade3</citedby><cites>FETCH-LOGICAL-c319t-980e1de4a6715761c9b675066dcfbe971a079eb209c85ce8efdc0dbeea2d7ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10032-022-00419-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10032-022-00419-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Hu, Shuying</creatorcontrib><creatorcontrib>Wang, Qiufeng</creatorcontrib><creatorcontrib>Huang, Kaizhu</creatorcontrib><creatorcontrib>Wen, Min</creatorcontrib><creatorcontrib>Coenen, Frans</creatorcontrib><title>Retrieval-based language model adaptation for handwritten Chinese text recognition</title><title>International journal on document analysis and recognition</title><addtitle>IJDAR</addtitle><description>In handwritten text recognition, compared to human, computers are far short of linguistic context knowledge, especially domain-matched knowledge. In this paper, we present a novel retrieval-based method to obtain an adaptive language model for offline recognition of unconstrained handwritten Chinese texts. The content of handwritten texts to be recognized is varied and usually unknown a priori. Therefore we adopt a two-pass recognition strategy. In the first pass, we utilize a common language model to obtain initial recognition results, which are used to retrieve the related contents from Internet. In the content retrieval, we evaluate different types of semantic representation from BERT output and the traditional TF–IDF representation. Then, we dynamically generate an adaptive language model from these related contents, which will consequently be combined with the common language model and applied in the second-pass recognition. We evaluate the proposed method on two benchmark unconstrained handwriting datasets, namely CASIA-HWDB and ICDAR-2013. Experimental results show that the proposed retrieval-based language model adaptation yields improvements in recognition performance, despite the reduced Internet contents hereby employed.</description><subject>Adaptation</subject><subject>Computer Science</subject><subject>Handwriting recognition</subject><subject>Image Processing and Computer Vision</subject><subject>Internet</subject><subject>Language</subject><subject>Original Paper</subject><subject>Pattern Recognition</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Texts</subject><issn>1433-2833</issn><issn>1433-2825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19E82qZZyuALBoRB1yFNbjsdOumYZHz8e6MV3bm4j8U553I_hM4ZvWSUyquYu-CE8ly0YIrwAzRjhRCE17w8_N2FOEYnMW4oZbKS9QytVpBCD69mII2J4PBgfLc3HeDt6GDAxpldMqkfPW7HgNfGu7fQpwQeL9a9hwg4wXvCAezY-f5LeIqOWjNEOPuZc_R8e_O0uCfLx7uHxfWSWMFUIqqmwBwUppKslBWzqqlkSavK2bYBJZmhUkHDqbJ1aaGG1lnqGgDDnTQOxBxdTLm7ML7sISa9GffB55M6Py2qInNQWcUnlQ1jjAFavQv91oQPzaj-Yqcndjqz09_sNM8mMZliFvsOwl_0P65PbDBzVw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hu, Shuying</creator><creator>Wang, Qiufeng</creator><creator>Huang, Kaizhu</creator><creator>Wen, Min</creator><creator>Coenen, Frans</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Retrieval-based language model adaptation for handwritten Chinese text recognition</title><author>Hu, Shuying ; Wang, Qiufeng ; Huang, Kaizhu ; Wen, Min ; Coenen, Frans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-980e1de4a6715761c9b675066dcfbe971a079eb209c85ce8efdc0dbeea2d7ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Computer Science</topic><topic>Handwriting recognition</topic><topic>Image Processing and Computer Vision</topic><topic>Internet</topic><topic>Language</topic><topic>Original Paper</topic><topic>Pattern Recognition</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Shuying</creatorcontrib><creatorcontrib>Wang, Qiufeng</creatorcontrib><creatorcontrib>Huang, Kaizhu</creatorcontrib><creatorcontrib>Wen, Min</creatorcontrib><creatorcontrib>Coenen, Frans</creatorcontrib><collection>CrossRef</collection><jtitle>International journal on document analysis and recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Shuying</au><au>Wang, Qiufeng</au><au>Huang, Kaizhu</au><au>Wen, Min</au><au>Coenen, Frans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrieval-based language model adaptation for handwritten Chinese text recognition</atitle><jtitle>International journal on document analysis and recognition</jtitle><stitle>IJDAR</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>26</volume><issue>2</issue><spage>109</spage><epage>119</epage><pages>109-119</pages><issn>1433-2833</issn><eissn>1433-2825</eissn><abstract>In handwritten text recognition, compared to human, computers are far short of linguistic context knowledge, especially domain-matched knowledge. In this paper, we present a novel retrieval-based method to obtain an adaptive language model for offline recognition of unconstrained handwritten Chinese texts. The content of handwritten texts to be recognized is varied and usually unknown a priori. Therefore we adopt a two-pass recognition strategy. In the first pass, we utilize a common language model to obtain initial recognition results, which are used to retrieve the related contents from Internet. In the content retrieval, we evaluate different types of semantic representation from BERT output and the traditional TF–IDF representation. Then, we dynamically generate an adaptive language model from these related contents, which will consequently be combined with the common language model and applied in the second-pass recognition. We evaluate the proposed method on two benchmark unconstrained handwriting datasets, namely CASIA-HWDB and ICDAR-2013. Experimental results show that the proposed retrieval-based language model adaptation yields improvements in recognition performance, despite the reduced Internet contents hereby employed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10032-022-00419-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-2833
ispartof International journal on document analysis and recognition, 2023-06, Vol.26 (2), p.109-119
issn 1433-2833
1433-2825
language eng
recordid cdi_proquest_journals_2823644199
source SpringerNature Journals
subjects Adaptation
Computer Science
Handwriting recognition
Image Processing and Computer Vision
Internet
Language
Original Paper
Pattern Recognition
Representations
Retrieval
Texts
title Retrieval-based language model adaptation for handwritten Chinese text recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T16%3A27%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrieval-based%20language%20model%20adaptation%20for%20handwritten%20Chinese%20text%20recognition&rft.jtitle=International%20journal%20on%20document%20analysis%20and%20recognition&rft.au=Hu,%20Shuying&rft.date=2023-06-01&rft.volume=26&rft.issue=2&rft.spage=109&rft.epage=119&rft.pages=109-119&rft.issn=1433-2833&rft.eissn=1433-2825&rft_id=info:doi/10.1007/s10032-022-00419-2&rft_dat=%3Cproquest_cross%3E2823644199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823644199&rft_id=info:pmid/&rfr_iscdi=true