SciCap+: A Knowledge Augmented Dataset to Study the Challenges of Scientific Figure Captioning

In scholarly documents, figures provide a straightforward way of communicating scientific findings to readers. Automating figure caption generation helps move model understandings of scientific documents beyond text and will help authors write informative captions that facilitate communicating scien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Yang, Zhishen, Dabre, Raj, Tanaka, Hideki, Okazaki, Naoaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yang, Zhishen
Dabre, Raj
Tanaka, Hideki
Okazaki, Naoaki
description In scholarly documents, figures provide a straightforward way of communicating scientific findings to readers. Automating figure caption generation helps move model understandings of scientific documents beyond text and will help authors write informative captions that facilitate communicating scientific findings. Unlike previous studies, we reframe scientific figure captioning as a knowledge-augmented image captioning task that models need to utilize knowledge embedded across modalities for caption generation. To this end, we extended the large-scale SciCap dataset~\cite{hsu-etal-2021-scicap-generating} to SciCap+ which includes mention-paragraphs (paragraphs mentioning figures) and OCR tokens. Then, we conduct experiments with the M4C-Captioner (a multimodal transformer-based model with a pointer network) as a baseline for our study. Our results indicate that mention-paragraphs serves as additional context knowledge, which significantly boosts the automatic standard image caption evaluation scores compared to the figure-only baselines. Human evaluations further reveal the challenges of generating figure captions that are informative to readers. The code and SciCap+ dataset will be publicly available at https://github.com/ZhishenYang/scientific_figure_captioning_dataset
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2823307342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823307342</sourcerecordid><originalsourceid>FETCH-proquest_journals_28233073423</originalsourceid><addsrcrecordid>eNqNjkELgjAYhkcQJOV_-KBjCLZpSjexJOhY52To55zYZm4j-vft0A_o9B6eh4d3QQLK2D7KE0pXJDRmiOOYHjKapiwgj1sjSz7tjlDAVen3iK1AKJx4orLYwolbbtCC1XCzrv2A7RHKno8jKoEGdAe-4F3ZyQYqKdzsOZ-s1EoqsSHLjo8Gw9-uybY638tLNM365dDYetBuVh7VNPc344wllP1nfQGQI0L3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823307342</pqid></control><display><type>article</type><title>SciCap+: A Knowledge Augmented Dataset to Study the Challenges of Scientific Figure Captioning</title><source>Free E- Journals</source><creator>Yang, Zhishen ; Dabre, Raj ; Tanaka, Hideki ; Okazaki, Naoaki</creator><creatorcontrib>Yang, Zhishen ; Dabre, Raj ; Tanaka, Hideki ; Okazaki, Naoaki</creatorcontrib><description>In scholarly documents, figures provide a straightforward way of communicating scientific findings to readers. Automating figure caption generation helps move model understandings of scientific documents beyond text and will help authors write informative captions that facilitate communicating scientific findings. Unlike previous studies, we reframe scientific figure captioning as a knowledge-augmented image captioning task that models need to utilize knowledge embedded across modalities for caption generation. To this end, we extended the large-scale SciCap dataset~\cite{hsu-etal-2021-scicap-generating} to SciCap+ which includes mention-paragraphs (paragraphs mentioning figures) and OCR tokens. Then, we conduct experiments with the M4C-Captioner (a multimodal transformer-based model with a pointer network) as a baseline for our study. Our results indicate that mention-paragraphs serves as additional context knowledge, which significantly boosts the automatic standard image caption evaluation scores compared to the figure-only baselines. Human evaluations further reveal the challenges of generating figure captions that are informative to readers. The code and SciCap+ dataset will be publicly available at https://github.com/ZhishenYang/scientific_figure_captioning_dataset</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Communication ; Data augmentation ; Datasets ; Documents</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yang, Zhishen</creatorcontrib><creatorcontrib>Dabre, Raj</creatorcontrib><creatorcontrib>Tanaka, Hideki</creatorcontrib><creatorcontrib>Okazaki, Naoaki</creatorcontrib><title>SciCap+: A Knowledge Augmented Dataset to Study the Challenges of Scientific Figure Captioning</title><title>arXiv.org</title><description>In scholarly documents, figures provide a straightforward way of communicating scientific findings to readers. Automating figure caption generation helps move model understandings of scientific documents beyond text and will help authors write informative captions that facilitate communicating scientific findings. Unlike previous studies, we reframe scientific figure captioning as a knowledge-augmented image captioning task that models need to utilize knowledge embedded across modalities for caption generation. To this end, we extended the large-scale SciCap dataset~\cite{hsu-etal-2021-scicap-generating} to SciCap+ which includes mention-paragraphs (paragraphs mentioning figures) and OCR tokens. Then, we conduct experiments with the M4C-Captioner (a multimodal transformer-based model with a pointer network) as a baseline for our study. Our results indicate that mention-paragraphs serves as additional context knowledge, which significantly boosts the automatic standard image caption evaluation scores compared to the figure-only baselines. Human evaluations further reveal the challenges of generating figure captions that are informative to readers. The code and SciCap+ dataset will be publicly available at https://github.com/ZhishenYang/scientific_figure_captioning_dataset</description><subject>Communication</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Documents</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkELgjAYhkcQJOV_-KBjCLZpSjexJOhY52To55zYZm4j-vft0A_o9B6eh4d3QQLK2D7KE0pXJDRmiOOYHjKapiwgj1sjSz7tjlDAVen3iK1AKJx4orLYwolbbtCC1XCzrv2A7RHKno8jKoEGdAe-4F3ZyQYqKdzsOZ-s1EoqsSHLjo8Gw9-uybY638tLNM365dDYetBuVh7VNPc344wllP1nfQGQI0L3</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Yang, Zhishen</creator><creator>Dabre, Raj</creator><creator>Tanaka, Hideki</creator><creator>Okazaki, Naoaki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230606</creationdate><title>SciCap+: A Knowledge Augmented Dataset to Study the Challenges of Scientific Figure Captioning</title><author>Yang, Zhishen ; Dabre, Raj ; Tanaka, Hideki ; Okazaki, Naoaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28233073423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Communication</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Documents</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhishen</creatorcontrib><creatorcontrib>Dabre, Raj</creatorcontrib><creatorcontrib>Tanaka, Hideki</creatorcontrib><creatorcontrib>Okazaki, Naoaki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhishen</au><au>Dabre, Raj</au><au>Tanaka, Hideki</au><au>Okazaki, Naoaki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SciCap+: A Knowledge Augmented Dataset to Study the Challenges of Scientific Figure Captioning</atitle><jtitle>arXiv.org</jtitle><date>2023-06-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In scholarly documents, figures provide a straightforward way of communicating scientific findings to readers. Automating figure caption generation helps move model understandings of scientific documents beyond text and will help authors write informative captions that facilitate communicating scientific findings. Unlike previous studies, we reframe scientific figure captioning as a knowledge-augmented image captioning task that models need to utilize knowledge embedded across modalities for caption generation. To this end, we extended the large-scale SciCap dataset~\cite{hsu-etal-2021-scicap-generating} to SciCap+ which includes mention-paragraphs (paragraphs mentioning figures) and OCR tokens. Then, we conduct experiments with the M4C-Captioner (a multimodal transformer-based model with a pointer network) as a baseline for our study. Our results indicate that mention-paragraphs serves as additional context knowledge, which significantly boosts the automatic standard image caption evaluation scores compared to the figure-only baselines. Human evaluations further reveal the challenges of generating figure captions that are informative to readers. The code and SciCap+ dataset will be publicly available at https://github.com/ZhishenYang/scientific_figure_captioning_dataset</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2823307342
source Free E- Journals
subjects Communication
Data augmentation
Datasets
Documents
title SciCap+: A Knowledge Augmented Dataset to Study the Challenges of Scientific Figure Captioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A02%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SciCap+:%20A%20Knowledge%20Augmented%20Dataset%20to%20Study%20the%20Challenges%20of%20Scientific%20Figure%20Captioning&rft.jtitle=arXiv.org&rft.au=Yang,%20Zhishen&rft.date=2023-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2823307342%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823307342&rft_id=info:pmid/&rfr_iscdi=true