Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment
In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Theref...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2023-01, Vol.71, p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on signal processing |
container_volume | 71 |
creator | Lahav, Almog Talmon, Ronen |
description | In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings. |
doi_str_mv | 10.1109/TSP.2023.3272159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823192981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10114414</ieee_id><sourcerecordid>2823192981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdmkuxuciytX1CxsBW8hXQ70S3tpibpof_eSHvwNMPwvMPLQ8gtsBEA0w-LZj7ijIuR4DWHUp-RAWgJBZN1dZ53VoqiVPXnJbmKcc0YSKmrAZnNg2_DPiaMdNzbzSF2kfqepm-kb7bvnN-sqHe0mTfTfEihazPpfKBTmyxtMOXcpvvqt9ina3Lh7CbizWkOycfT42LyUszen18n41nRCiFTAWrJS7HkleSosEXBGVrnOCylqiq9qrTSnHMrOQBKV-k6l0enVQlt3epaDMn98e8u-J89xmTWfh9y-2i44gI01woyxY5UG3yMAZ3ZhW5rw8EAM3_OTHZm_pyZk7McuTtGOkT8h0O2BVL8Ap7ZZe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823192981</pqid></control><display><type>article</type><title>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</title><source>IEEE Electronic Library (IEL)</source><creator>Lahav, Almog ; Talmon, Ronen</creator><creatorcontrib>Lahav, Almog ; Talmon, Ronen</creatorcontrib><description>In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3272159</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alignment ; BCI ; Correlation analysis ; Covariance matrices ; Covariance matrix ; Data analysis ; Datasets ; Dimensional analysis ; Domain adaptation ; EEG ; Electroencephalography ; Geometry ; Graphical representations ; Hierarchies ; Human-computer interface ; Manifolds ; Manifolds (mathematics) ; Mathematical analysis ; Recording ; riemannian geometry ; Symmetric matrices ; symmetric positive semidefinite matrices ; Task analysis</subject><ispartof>IEEE transactions on signal processing, 2023-01, Vol.71, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</citedby><cites>FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</cites><orcidid>0000-0002-5934-2094 ; 0000-0002-6838-1423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10114414$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Lahav, Almog</creatorcontrib><creatorcontrib>Talmon, Ronen</creatorcontrib><title>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings.</description><subject>Alignment</subject><subject>BCI</subject><subject>Correlation analysis</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Dimensional analysis</subject><subject>Domain adaptation</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Geometry</subject><subject>Graphical representations</subject><subject>Hierarchies</subject><subject>Human-computer interface</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Recording</subject><subject>riemannian geometry</subject><subject>Symmetric matrices</subject><subject>symmetric positive semidefinite matrices</subject><subject>Task analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdmkuxuciytX1CxsBW8hXQ70S3tpibpof_eSHvwNMPwvMPLQ8gtsBEA0w-LZj7ijIuR4DWHUp-RAWgJBZN1dZ53VoqiVPXnJbmKcc0YSKmrAZnNg2_DPiaMdNzbzSF2kfqepm-kb7bvnN-sqHe0mTfTfEihazPpfKBTmyxtMOXcpvvqt9ina3Lh7CbizWkOycfT42LyUszen18n41nRCiFTAWrJS7HkleSosEXBGVrnOCylqiq9qrTSnHMrOQBKV-k6l0enVQlt3epaDMn98e8u-J89xmTWfh9y-2i44gI01woyxY5UG3yMAZ3ZhW5rw8EAM3_OTHZm_pyZk7McuTtGOkT8h0O2BVL8Ap7ZZe8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lahav, Almog</creator><creator>Talmon, Ronen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5934-2094</orcidid><orcidid>https://orcid.org/0000-0002-6838-1423</orcidid></search><sort><creationdate>20230101</creationdate><title>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</title><author>Lahav, Almog ; Talmon, Ronen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alignment</topic><topic>BCI</topic><topic>Correlation analysis</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Dimensional analysis</topic><topic>Domain adaptation</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Geometry</topic><topic>Graphical representations</topic><topic>Hierarchies</topic><topic>Human-computer interface</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Recording</topic><topic>riemannian geometry</topic><topic>Symmetric matrices</topic><topic>symmetric positive semidefinite matrices</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahav, Almog</creatorcontrib><creatorcontrib>Talmon, Ronen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahav, Almog</au><au>Talmon, Ronen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>71</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3272159</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5934-2094</orcidid><orcidid>https://orcid.org/0000-0002-6838-1423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2023-01, Vol.71, p.1-15 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2823192981 |
source | IEEE Electronic Library (IEL) |
subjects | Alignment BCI Correlation analysis Covariance matrices Covariance matrix Data analysis Datasets Dimensional analysis Domain adaptation EEG Electroencephalography Geometry Graphical representations Hierarchies Human-computer interface Manifolds Manifolds (mathematics) Mathematical analysis Recording riemannian geometry Symmetric matrices symmetric positive semidefinite matrices Task analysis |
title | Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Procrustes%20Analysis%20on%20the%20Manifold%20of%20SPSD%20Matrices%20for%20Data%20Sets%20Alignment&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Lahav,%20Almog&rft.date=2023-01-01&rft.volume=71&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3272159&rft_dat=%3Cproquest_cross%3E2823192981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823192981&rft_id=info:pmid/&rft_ieee_id=10114414&rfr_iscdi=true |