Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment

In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Theref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2023-01, Vol.71, p.1-15
Hauptverfasser: Lahav, Almog, Talmon, Ronen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on signal processing
container_volume 71
creator Lahav, Almog
Talmon, Ronen
description In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings.
doi_str_mv 10.1109/TSP.2023.3272159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823192981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10114414</ieee_id><sourcerecordid>2823192981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdmkuxuciytX1CxsBW8hXQ70S3tpibpof_eSHvwNMPwvMPLQ8gtsBEA0w-LZj7ijIuR4DWHUp-RAWgJBZN1dZ53VoqiVPXnJbmKcc0YSKmrAZnNg2_DPiaMdNzbzSF2kfqepm-kb7bvnN-sqHe0mTfTfEihazPpfKBTmyxtMOXcpvvqt9ina3Lh7CbizWkOycfT42LyUszen18n41nRCiFTAWrJS7HkleSosEXBGVrnOCylqiq9qrTSnHMrOQBKV-k6l0enVQlt3epaDMn98e8u-J89xmTWfh9y-2i44gI01woyxY5UG3yMAZ3ZhW5rw8EAM3_OTHZm_pyZk7McuTtGOkT8h0O2BVL8Ap7ZZe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823192981</pqid></control><display><type>article</type><title>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</title><source>IEEE Electronic Library (IEL)</source><creator>Lahav, Almog ; Talmon, Ronen</creator><creatorcontrib>Lahav, Almog ; Talmon, Ronen</creatorcontrib><description>In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3272159</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alignment ; BCI ; Correlation analysis ; Covariance matrices ; Covariance matrix ; Data analysis ; Datasets ; Dimensional analysis ; Domain adaptation ; EEG ; Electroencephalography ; Geometry ; Graphical representations ; Hierarchies ; Human-computer interface ; Manifolds ; Manifolds (mathematics) ; Mathematical analysis ; Recording ; riemannian geometry ; Symmetric matrices ; symmetric positive semidefinite matrices ; Task analysis</subject><ispartof>IEEE transactions on signal processing, 2023-01, Vol.71, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</citedby><cites>FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</cites><orcidid>0000-0002-5934-2094 ; 0000-0002-6838-1423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10114414$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Lahav, Almog</creatorcontrib><creatorcontrib>Talmon, Ronen</creatorcontrib><title>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings.</description><subject>Alignment</subject><subject>BCI</subject><subject>Correlation analysis</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Dimensional analysis</subject><subject>Domain adaptation</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Geometry</subject><subject>Graphical representations</subject><subject>Hierarchies</subject><subject>Human-computer interface</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Recording</subject><subject>riemannian geometry</subject><subject>Symmetric matrices</subject><subject>symmetric positive semidefinite matrices</subject><subject>Task analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdmkuxuciytX1CxsBW8hXQ70S3tpibpof_eSHvwNMPwvMPLQ8gtsBEA0w-LZj7ijIuR4DWHUp-RAWgJBZN1dZ53VoqiVPXnJbmKcc0YSKmrAZnNg2_DPiaMdNzbzSF2kfqepm-kb7bvnN-sqHe0mTfTfEihazPpfKBTmyxtMOXcpvvqt9ina3Lh7CbizWkOycfT42LyUszen18n41nRCiFTAWrJS7HkleSosEXBGVrnOCylqiq9qrTSnHMrOQBKV-k6l0enVQlt3epaDMn98e8u-J89xmTWfh9y-2i44gI01woyxY5UG3yMAZ3ZhW5rw8EAM3_OTHZm_pyZk7McuTtGOkT8h0O2BVL8Ap7ZZe8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Lahav, Almog</creator><creator>Talmon, Ronen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5934-2094</orcidid><orcidid>https://orcid.org/0000-0002-6838-1423</orcidid></search><sort><creationdate>20230101</creationdate><title>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</title><author>Lahav, Almog ; Talmon, Ronen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-18b253b2642e8ece320eaff21b48669d6989222a4211e4f697053ef9851c7c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alignment</topic><topic>BCI</topic><topic>Correlation analysis</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Dimensional analysis</topic><topic>Domain adaptation</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Geometry</topic><topic>Graphical representations</topic><topic>Hierarchies</topic><topic>Human-computer interface</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Recording</topic><topic>riemannian geometry</topic><topic>Symmetric matrices</topic><topic>symmetric positive semidefinite matrices</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahav, Almog</creatorcontrib><creatorcontrib>Talmon, Ronen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahav, Almog</au><au>Talmon, Ronen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>71</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In contemporary high-dimensional data analysis, intrinsically similar and related data sets are often significantly different due to various undesired factors that could arise from different acquisition equipment, calibration, environmental conditions, and many other sources of batch effects. Therefore, the task of aligning such data sets has become ubiquitous. In this work, we present a method for the alignment of different, but related, sets of Symmetric Positive Semidefinite (SPSD) matrices, which constitute a commonly-used family of features, e.g., covariance and correlation matrices, various kernels, and prototypical graph and network representations. Our method does not require any a-priori correspondence, and it is based on non-Euclidean Procrustes Analysis (PA) using a particular Riemannian geometry of SPSD matrices. While the derivation is focused on the manifold of SPSD matrices, we show that our alignment method can be applied directly in the original high-dimensional data space, when considering SPSD features that are sample covariance matrices. We demonstrate the advantage of our approach over competing methods in simulations and in an application to Brain-Computer Interface (BCI) with electroencephalographic (EEG) recordings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3272159</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5934-2094</orcidid><orcidid>https://orcid.org/0000-0002-6838-1423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2023-01, Vol.71, p.1-15
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_2823192981
source IEEE Electronic Library (IEL)
subjects Alignment
BCI
Correlation analysis
Covariance matrices
Covariance matrix
Data analysis
Datasets
Dimensional analysis
Domain adaptation
EEG
Electroencephalography
Geometry
Graphical representations
Hierarchies
Human-computer interface
Manifolds
Manifolds (mathematics)
Mathematical analysis
Recording
riemannian geometry
Symmetric matrices
symmetric positive semidefinite matrices
Task analysis
title Procrustes Analysis on the Manifold of SPSD Matrices for Data Sets Alignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Procrustes%20Analysis%20on%20the%20Manifold%20of%20SPSD%20Matrices%20for%20Data%20Sets%20Alignment&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Lahav,%20Almog&rft.date=2023-01-01&rft.volume=71&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3272159&rft_dat=%3Cproquest_cross%3E2823192981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823192981&rft_id=info:pmid/&rft_ieee_id=10114414&rfr_iscdi=true