Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes
In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry infor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2023-06, Vol.71 (6), p.2360-2372 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2372 |
---|---|
container_issue | 6 |
container_start_page | 2360 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 71 |
creator | Manfredi, Paolo |
description | In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence. |
doi_str_mv | 10.1109/TMTT.2022.3228953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823180728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9996177</ieee_id><sourcerecordid>2823180728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N525ylKJVaFFhi8cwzWYlpe7WJGvpvzelxdMwMM87Mw9Ct5RMKCX6oV7U9YQRxiacMaUlP0MjKmVV6LIi52hECFWFFopcoqsY17kVkqgR-nwP_QpWfuNj8hYvO-tCAt-lPf4YoEu-9RaS7zvct3jhbeh38Ovw1Ac7-BTxMvruC89giNFDh3OadTG6eI0uWthEd3OqY7R8fqqnL8X8bfY6fZwXlvMyFZyCAilIpRsLEhpoVcv1SghqZdU6cKx0QhBZsqbRwrn8G1fACbWZzxAfo_tj7jb0P4OLyaz7IXR5pWGKcapIlZExosepfH-MwbVmG_w3hL2hxBz8mYM_c_BnTv4yc3dkvHPuf15rXdKq4n_tjG1j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823180728</pqid></control><display><type>article</type><title>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Manfredi, Paolo</creator><creatorcontrib>Manfredi, Paolo</creatorcontrib><description>In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3228953</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplifier design ; Analytical models ; Design parameters ; Gaussian process ; Gaussian process regression (GPR) ; Integrated circuit modeling ; kriging ; Machine learning ; Mathematical models ; Microwave circuits ; Microwave theory and techniques ; Polynomials ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Probabilistic logic ; S parameters ; Statistical analysis ; surrogate modeling ; Training ; Uncertainty ; uncertainty quantification (UQ)</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-06, Vol.71 (6), p.2360-2372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</citedby><cites>FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</cites><orcidid>0000-0002-0574-8945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9996177$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Manfredi, Paolo</creatorcontrib><title>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence.</description><subject>Amplifier design</subject><subject>Analytical models</subject><subject>Design parameters</subject><subject>Gaussian process</subject><subject>Gaussian process regression (GPR)</subject><subject>Integrated circuit modeling</subject><subject>kriging</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Microwave circuits</subject><subject>Microwave theory and techniques</subject><subject>Polynomials</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Probabilistic logic</subject><subject>S parameters</subject><subject>Statistical analysis</subject><subject>surrogate modeling</subject><subject>Training</subject><subject>Uncertainty</subject><subject>uncertainty quantification (UQ)</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N525ylKJVaFFhi8cwzWYlpe7WJGvpvzelxdMwMM87Mw9Ct5RMKCX6oV7U9YQRxiacMaUlP0MjKmVV6LIi52hECFWFFopcoqsY17kVkqgR-nwP_QpWfuNj8hYvO-tCAt-lPf4YoEu-9RaS7zvct3jhbeh38Ovw1Ac7-BTxMvruC89giNFDh3OadTG6eI0uWthEd3OqY7R8fqqnL8X8bfY6fZwXlvMyFZyCAilIpRsLEhpoVcv1SghqZdU6cKx0QhBZsqbRwrn8G1fACbWZzxAfo_tj7jb0P4OLyaz7IXR5pWGKcapIlZExosepfH-MwbVmG_w3hL2hxBz8mYM_c_BnTv4yc3dkvHPuf15rXdKq4n_tjG1j</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Manfredi, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0574-8945</orcidid></search><sort><creationdate>20230601</creationdate><title>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</title><author>Manfredi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplifier design</topic><topic>Analytical models</topic><topic>Design parameters</topic><topic>Gaussian process</topic><topic>Gaussian process regression (GPR)</topic><topic>Integrated circuit modeling</topic><topic>kriging</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Microwave circuits</topic><topic>Microwave theory and techniques</topic><topic>Polynomials</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Probabilistic logic</topic><topic>S parameters</topic><topic>Statistical analysis</topic><topic>surrogate modeling</topic><topic>Training</topic><topic>Uncertainty</topic><topic>uncertainty quantification (UQ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manfredi, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manfredi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>71</volume><issue>6</issue><spage>2360</spage><epage>2372</epage><pages>2360-2372</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3228953</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0574-8945</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2023-06, Vol.71 (6), p.2360-2372 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_journals_2823180728 |
source | IEEE Electronic Library (IEL) |
subjects | Amplifier design Analytical models Design parameters Gaussian process Gaussian process regression (GPR) Integrated circuit modeling kriging Machine learning Mathematical models Microwave circuits Microwave theory and techniques Polynomials Principal component analysis principal component analysis (PCA) Principal components analysis Probabilistic logic S parameters Statistical analysis surrogate modeling Training Uncertainty uncertainty quantification (UQ) |
title | Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Uncertainty%20Quantification%20of%20Microwave%20Circuits%20Using%20Gaussian%20Processes&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Manfredi,%20Paolo&rft.date=2023-06-01&rft.volume=71&rft.issue=6&rft.spage=2360&rft.epage=2372&rft.pages=2360-2372&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3228953&rft_dat=%3Cproquest_cross%3E2823180728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823180728&rft_id=info:pmid/&rft_ieee_id=9996177&rfr_iscdi=true |