Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes

In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2023-06, Vol.71 (6), p.2360-2372
1. Verfasser: Manfredi, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2372
container_issue 6
container_start_page 2360
container_title IEEE transactions on microwave theory and techniques
container_volume 71
creator Manfredi, Paolo
description In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence.
doi_str_mv 10.1109/TMTT.2022.3228953
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823180728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9996177</ieee_id><sourcerecordid>2823180728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N525ylKJVaFFhi8cwzWYlpe7WJGvpvzelxdMwMM87Mw9Ct5RMKCX6oV7U9YQRxiacMaUlP0MjKmVV6LIi52hECFWFFopcoqsY17kVkqgR-nwP_QpWfuNj8hYvO-tCAt-lPf4YoEu-9RaS7zvct3jhbeh38Ovw1Ac7-BTxMvruC89giNFDh3OadTG6eI0uWthEd3OqY7R8fqqnL8X8bfY6fZwXlvMyFZyCAilIpRsLEhpoVcv1SghqZdU6cKx0QhBZsqbRwrn8G1fACbWZzxAfo_tj7jb0P4OLyaz7IXR5pWGKcapIlZExosepfH-MwbVmG_w3hL2hxBz8mYM_c_BnTv4yc3dkvHPuf15rXdKq4n_tjG1j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823180728</pqid></control><display><type>article</type><title>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Manfredi, Paolo</creator><creatorcontrib>Manfredi, Paolo</creatorcontrib><description>In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2022.3228953</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplifier design ; Analytical models ; Design parameters ; Gaussian process ; Gaussian process regression (GPR) ; Integrated circuit modeling ; kriging ; Machine learning ; Mathematical models ; Microwave circuits ; Microwave theory and techniques ; Polynomials ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Probabilistic logic ; S parameters ; Statistical analysis ; surrogate modeling ; Training ; Uncertainty ; uncertainty quantification (UQ)</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-06, Vol.71 (6), p.2360-2372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</citedby><cites>FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</cites><orcidid>0000-0002-0574-8945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9996177$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Manfredi, Paolo</creatorcontrib><title>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence.</description><subject>Amplifier design</subject><subject>Analytical models</subject><subject>Design parameters</subject><subject>Gaussian process</subject><subject>Gaussian process regression (GPR)</subject><subject>Integrated circuit modeling</subject><subject>kriging</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Microwave circuits</subject><subject>Microwave theory and techniques</subject><subject>Polynomials</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Probabilistic logic</subject><subject>S parameters</subject><subject>Statistical analysis</subject><subject>surrogate modeling</subject><subject>Training</subject><subject>Uncertainty</subject><subject>uncertainty quantification (UQ)</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_N525ylKJVaFFhi8cwzWYlpe7WJGvpvzelxdMwMM87Mw9Ct5RMKCX6oV7U9YQRxiacMaUlP0MjKmVV6LIi52hECFWFFopcoqsY17kVkqgR-nwP_QpWfuNj8hYvO-tCAt-lPf4YoEu-9RaS7zvct3jhbeh38Ovw1Ac7-BTxMvruC89giNFDh3OadTG6eI0uWthEd3OqY7R8fqqnL8X8bfY6fZwXlvMyFZyCAilIpRsLEhpoVcv1SghqZdU6cKx0QhBZsqbRwrn8G1fACbWZzxAfo_tj7jb0P4OLyaz7IXR5pWGKcapIlZExosepfH-MwbVmG_w3hL2hxBz8mYM_c_BnTv4yc3dkvHPuf15rXdKq4n_tjG1j</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Manfredi, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0574-8945</orcidid></search><sort><creationdate>20230601</creationdate><title>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</title><author>Manfredi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-31a8a54079dca5adaf8f39b441c57feae26e440562dd94ee22838a301cc3379d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplifier design</topic><topic>Analytical models</topic><topic>Design parameters</topic><topic>Gaussian process</topic><topic>Gaussian process regression (GPR)</topic><topic>Integrated circuit modeling</topic><topic>kriging</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Microwave circuits</topic><topic>Microwave theory and techniques</topic><topic>Polynomials</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Probabilistic logic</topic><topic>S parameters</topic><topic>Statistical analysis</topic><topic>surrogate modeling</topic><topic>Training</topic><topic>Uncertainty</topic><topic>uncertainty quantification (UQ)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manfredi, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manfredi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>71</volume><issue>6</issue><spage>2360</spage><epage>2372</epage><pages>2360-2372</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>In this article, a probabilistic machine learning framework based on Gaussian process regression (GPR) and principal component analysis (PCA) is proposed for the uncertainty quantification (UQ) of microwave circuits. As opposed to most surrogate modeling techniques, GPR models inherently carry information on the model prediction uncertainty due to unseen data. This article shows how the inherent uncertainty of GPR pointwise predictions can be combined with the uncertainty of the design parameters to provide global statistical information on the device performance with the inclusion of confidence bounds. The model confidence is possibly improved by increasing the amount of training data. In addition, PCA is employed to effectively deal with problems with multiple and possibly complex-valued output components, such as those involving the UQ of time-domain responses or multiport scattering parameters. The proposed technique is successfully applied to two low-noise amplifier designs subject to the process variation of up to 25 parameters. Comparisons against the state-of-the-art polynomial chaos expansion method demonstrates that GPR achieves superior accuracy, while additionally providing information on the prediction confidence.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2022.3228953</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0574-8945</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2023-06, Vol.71 (6), p.2360-2372
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_journals_2823180728
source IEEE Electronic Library (IEL)
subjects Amplifier design
Analytical models
Design parameters
Gaussian process
Gaussian process regression (GPR)
Integrated circuit modeling
kriging
Machine learning
Mathematical models
Microwave circuits
Microwave theory and techniques
Polynomials
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Probabilistic logic
S parameters
Statistical analysis
surrogate modeling
Training
Uncertainty
uncertainty quantification (UQ)
title Probabilistic Uncertainty Quantification of Microwave Circuits Using Gaussian Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Uncertainty%20Quantification%20of%20Microwave%20Circuits%20Using%20Gaussian%20Processes&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Manfredi,%20Paolo&rft.date=2023-06-01&rft.volume=71&rft.issue=6&rft.spage=2360&rft.epage=2372&rft.pages=2360-2372&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2022.3228953&rft_dat=%3Cproquest_cross%3E2823180728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823180728&rft_id=info:pmid/&rft_ieee_id=9996177&rfr_iscdi=true