Analysis of dilatancy relation and shear‐band formation in granular materials based on Eshelby‐Mandel tensor
The theory of configurational or material forces based on the Eshelby stress tensor (also called energy‐momentum tensor) has provided a general and efficient way to describe the motion of material defects and other inhomogeneities within the framework of continuum mechanics. In this paper, we explor...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2023-06, Vol.47 (9), p.1699-1717 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1717 |
---|---|
container_issue | 9 |
container_start_page | 1699 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 47 |
creator | Guo, Peijun Zhou, Shunhua Stolle, Dieter |
description | The theory of configurational or material forces based on the Eshelby stress tensor (also called energy‐momentum tensor) has provided a general and efficient way to describe the motion of material defects and other inhomogeneities within the framework of continuum mechanics. In this paper, we explore how to use the configurational forces to describe the behavior of homogeneous granular materials by considering the material characteristics on both continuum and discrete particle levels. In particular, dissipative driving forces based on the Eshelby‐Mandel stress tensor are utilized as the driving force of the configuration variations in the form of shear‐induced volume change. The energy dissipation induced by the relative sliding at particle contacts is considered in the configurational forces. To characterize the dilation of a homogeneous granular material with uniform deformation, a virtual plane is introduced to facilitate the analysis and to derive the dilatancy formulation. With the consideration of the shear‐band geometry and the requirement of configurational force equilibrium across the boundary of a shear‐band, the condition for the onset of a shear band is derived. For granular specimens subjected to biaxial compression, the analyses recover the well‐known Rowe's dilatancy formulation and yield the shear‐band orientation identical to that obtained from the classical bifurcation analysis within the framework of elasto‐plasticity. |
doi_str_mv | 10.1002/nag.3535 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823154848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823154848</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3115-6cefd68f5ba00bed679f7dfd064aa6039cdd2e575bda6820320675689d49d81c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcQRLbNikjOPYcZZVBQWpwAbW1iS2S6rUKXYrlB1H4IycBJeyZTU_73sjzSPkksGEAeQ3HpcTLrg4IiMGlcwqJfgxGQGXPKtAslNyFuMKAERSR2Qz9dgNsY20d9S0HW7RNwMNNnVt7yl6Q-ObxfD9-VXvB9eH9UFqPV0G9LsOA00rG1rsIq0xWkOTfJtsXT0k32Py2Y5urY99OCcnLnH24q-Oyevd7cvsPls8zx9m00WGnDGRycY6I5UTNQLU1siycqVxBmSBKIFXjTG5FaWoDUqVA89BlkKqyhSVUazhY3J1uLsJ_fvOxq1e9buQno06VzlnolCFStT1gWpCH2OwTm9Cu8YwaAZ6n6dOeep9ngnNDuhH29nhX04_Tee__A8TJXnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823154848</pqid></control><display><type>article</type><title>Analysis of dilatancy relation and shear‐band formation in granular materials based on Eshelby‐Mandel tensor</title><source>Wiley Online Library All Journals</source><creator>Guo, Peijun ; Zhou, Shunhua ; Stolle, Dieter</creator><creatorcontrib>Guo, Peijun ; Zhou, Shunhua ; Stolle, Dieter</creatorcontrib><description>The theory of configurational or material forces based on the Eshelby stress tensor (also called energy‐momentum tensor) has provided a general and efficient way to describe the motion of material defects and other inhomogeneities within the framework of continuum mechanics. In this paper, we explore how to use the configurational forces to describe the behavior of homogeneous granular materials by considering the material characteristics on both continuum and discrete particle levels. In particular, dissipative driving forces based on the Eshelby‐Mandel stress tensor are utilized as the driving force of the configuration variations in the form of shear‐induced volume change. The energy dissipation induced by the relative sliding at particle contacts is considered in the configurational forces. To characterize the dilation of a homogeneous granular material with uniform deformation, a virtual plane is introduced to facilitate the analysis and to derive the dilatancy formulation. With the consideration of the shear‐band geometry and the requirement of configurational force equilibrium across the boundary of a shear‐band, the condition for the onset of a shear band is derived. For granular specimens subjected to biaxial compression, the analyses recover the well‐known Rowe's dilatancy formulation and yield the shear‐band orientation identical to that obtained from the classical bifurcation analysis within the framework of elasto‐plasticity.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3535</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Analysis ; Compression ; configurational forces ; Continuum mechanics ; Defects ; Deformation ; Dilatancy ; Edge dislocations ; Energy dissipation ; Energy exchange ; Eshelby stress tensor ; granular material ; Granular materials ; Mathematical analysis ; Mechanics ; Momentum ; Shear ; shear band ; Shear bands ; Tensors</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2023-06, Vol.47 (9), p.1699-1717</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a3115-6cefd68f5ba00bed679f7dfd064aa6039cdd2e575bda6820320675689d49d81c3</cites><orcidid>0000-0003-2881-3874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3535$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3535$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Zhou, Shunhua</creatorcontrib><creatorcontrib>Stolle, Dieter</creatorcontrib><title>Analysis of dilatancy relation and shear‐band formation in granular materials based on Eshelby‐Mandel tensor</title><title>International journal for numerical and analytical methods in geomechanics</title><description>The theory of configurational or material forces based on the Eshelby stress tensor (also called energy‐momentum tensor) has provided a general and efficient way to describe the motion of material defects and other inhomogeneities within the framework of continuum mechanics. In this paper, we explore how to use the configurational forces to describe the behavior of homogeneous granular materials by considering the material characteristics on both continuum and discrete particle levels. In particular, dissipative driving forces based on the Eshelby‐Mandel stress tensor are utilized as the driving force of the configuration variations in the form of shear‐induced volume change. The energy dissipation induced by the relative sliding at particle contacts is considered in the configurational forces. To characterize the dilation of a homogeneous granular material with uniform deformation, a virtual plane is introduced to facilitate the analysis and to derive the dilatancy formulation. With the consideration of the shear‐band geometry and the requirement of configurational force equilibrium across the boundary of a shear‐band, the condition for the onset of a shear band is derived. For granular specimens subjected to biaxial compression, the analyses recover the well‐known Rowe's dilatancy formulation and yield the shear‐band orientation identical to that obtained from the classical bifurcation analysis within the framework of elasto‐plasticity.</description><subject>Analysis</subject><subject>Compression</subject><subject>configurational forces</subject><subject>Continuum mechanics</subject><subject>Defects</subject><subject>Deformation</subject><subject>Dilatancy</subject><subject>Edge dislocations</subject><subject>Energy dissipation</subject><subject>Energy exchange</subject><subject>Eshelby stress tensor</subject><subject>granular material</subject><subject>Granular materials</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Momentum</subject><subject>Shear</subject><subject>shear band</subject><subject>Shear bands</subject><subject>Tensors</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE1OwzAQhS0EEqUgcQRLbNikjOPYcZZVBQWpwAbW1iS2S6rUKXYrlB1H4IycBJeyZTU_73sjzSPkksGEAeQ3HpcTLrg4IiMGlcwqJfgxGQGXPKtAslNyFuMKAERSR2Qz9dgNsY20d9S0HW7RNwMNNnVt7yl6Q-ObxfD9-VXvB9eH9UFqPV0G9LsOA00rG1rsIq0xWkOTfJtsXT0k32Py2Y5urY99OCcnLnH24q-Oyevd7cvsPls8zx9m00WGnDGRycY6I5UTNQLU1siycqVxBmSBKIFXjTG5FaWoDUqVA89BlkKqyhSVUazhY3J1uLsJ_fvOxq1e9buQno06VzlnolCFStT1gWpCH2OwTm9Cu8YwaAZ6n6dOeep9ngnNDuhH29nhX04_Tee__A8TJXnY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Guo, Peijun</creator><creator>Zhou, Shunhua</creator><creator>Stolle, Dieter</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2881-3874</orcidid></search><sort><creationdate>20230601</creationdate><title>Analysis of dilatancy relation and shear‐band formation in granular materials based on Eshelby‐Mandel tensor</title><author>Guo, Peijun ; Zhou, Shunhua ; Stolle, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3115-6cefd68f5ba00bed679f7dfd064aa6039cdd2e575bda6820320675689d49d81c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Compression</topic><topic>configurational forces</topic><topic>Continuum mechanics</topic><topic>Defects</topic><topic>Deformation</topic><topic>Dilatancy</topic><topic>Edge dislocations</topic><topic>Energy dissipation</topic><topic>Energy exchange</topic><topic>Eshelby stress tensor</topic><topic>granular material</topic><topic>Granular materials</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Momentum</topic><topic>Shear</topic><topic>shear band</topic><topic>Shear bands</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Peijun</creatorcontrib><creatorcontrib>Zhou, Shunhua</creatorcontrib><creatorcontrib>Stolle, Dieter</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Peijun</au><au>Zhou, Shunhua</au><au>Stolle, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of dilatancy relation and shear‐band formation in granular materials based on Eshelby‐Mandel tensor</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>47</volume><issue>9</issue><spage>1699</spage><epage>1717</epage><pages>1699-1717</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>The theory of configurational or material forces based on the Eshelby stress tensor (also called energy‐momentum tensor) has provided a general and efficient way to describe the motion of material defects and other inhomogeneities within the framework of continuum mechanics. In this paper, we explore how to use the configurational forces to describe the behavior of homogeneous granular materials by considering the material characteristics on both continuum and discrete particle levels. In particular, dissipative driving forces based on the Eshelby‐Mandel stress tensor are utilized as the driving force of the configuration variations in the form of shear‐induced volume change. The energy dissipation induced by the relative sliding at particle contacts is considered in the configurational forces. To characterize the dilation of a homogeneous granular material with uniform deformation, a virtual plane is introduced to facilitate the analysis and to derive the dilatancy formulation. With the consideration of the shear‐band geometry and the requirement of configurational force equilibrium across the boundary of a shear‐band, the condition for the onset of a shear band is derived. For granular specimens subjected to biaxial compression, the analyses recover the well‐known Rowe's dilatancy formulation and yield the shear‐band orientation identical to that obtained from the classical bifurcation analysis within the framework of elasto‐plasticity.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3535</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2881-3874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2023-06, Vol.47 (9), p.1699-1717 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_journals_2823154848 |
source | Wiley Online Library All Journals |
subjects | Analysis Compression configurational forces Continuum mechanics Defects Deformation Dilatancy Edge dislocations Energy dissipation Energy exchange Eshelby stress tensor granular material Granular materials Mathematical analysis Mechanics Momentum Shear shear band Shear bands Tensors |
title | Analysis of dilatancy relation and shear‐band formation in granular materials based on Eshelby‐Mandel tensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20dilatancy%20relation%20and%20shear%E2%80%90band%20formation%20in%20granular%20materials%20based%20on%20Eshelby%E2%80%90Mandel%20tensor&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Guo,%20Peijun&rft.date=2023-06-01&rft.volume=47&rft.issue=9&rft.spage=1699&rft.epage=1717&rft.pages=1699-1717&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3535&rft_dat=%3Cproquest_cross%3E2823154848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823154848&rft_id=info:pmid/&rfr_iscdi=true |