Stability analysis for a class of semilinear nonlocal evolution equations

Our aim is to analyze some sufficient conditions ensuring the global solvability and stability of solutions to a class of nonlocal partial differential equations with nonlinear term, which describes numerous processes involving memory. By using the theory of completely positive functions, local esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2023-07, Vol.29 (2), Article 46
Hauptverfasser: Van Loi, Do, Van Tuan, Tran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Boletín de la Sociedad Matemática Mexicana
container_volume 29
creator Van Loi, Do
Van Tuan, Tran
description Our aim is to analyze some sufficient conditions ensuring the global solvability and stability of solutions to a class of nonlocal partial differential equations with nonlinear term, which describes numerous processes involving memory. By using the theory of completely positive functions, local estimates and fixed point arguments, we obtain some results on asymptotic stability and existence of decay solutions to our problem.
doi_str_mv 10.1007/s40590-023-00517-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2823082722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2823082722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-4feb0b69b466588bfa440aa09570660ac82de921d365ff9893207a288be43f503</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA6-jNa2aylOKjUHChgrtwZ5rIlOmkTWaE9tebWsGdq3sW3zlcPkKuOdxygPIuKdAGGAjJADQv2eGMTIQwBVPK6HMy4RlggsuPSzJLaQ0AnEvQoCdk8Tpg3XbtsKfYY7dPbaI-RIq06TAlGjxNbpOB3mGkfei70GBH3VfoxqENPXW7EY8hXZELj11ys987Je-PD2_zZ7Z8eVrM75esESUMTHlXQ12YWhWFrqrao1KACEaXUBSATSVWzgi-koX23lRGCihRZNIp6TXIKbk57W5j2I0uDXYdxph_T1ZUQkIlSiEyJU5UE0NK0Xm7je0G495ysEdr9mTNZmv2x5o95JI8lVKG-08X_6b_aX0DJ-Vv1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2823082722</pqid></control><display><type>article</type><title>Stability analysis for a class of semilinear nonlocal evolution equations</title><source>SpringerLink Journals</source><creator>Van Loi, Do ; Van Tuan, Tran</creator><creatorcontrib>Van Loi, Do ; Van Tuan, Tran</creatorcontrib><description>Our aim is to analyze some sufficient conditions ensuring the global solvability and stability of solutions to a class of nonlocal partial differential equations with nonlinear term, which describes numerous processes involving memory. By using the theory of completely positive functions, local estimates and fixed point arguments, we obtain some results on asymptotic stability and existence of decay solutions to our problem.</description><identifier>ISSN: 1405-213X</identifier><identifier>EISSN: 2296-4495</identifier><identifier>DOI: 10.1007/s40590-023-00517-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Fixed points (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Original Article ; Partial differential equations ; Stability analysis</subject><ispartof>Boletín de la Sociedad Matemática Mexicana, 2023-07, Vol.29 (2), Article 46</ispartof><rights>Sociedad Matemática Mexicana 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-4feb0b69b466588bfa440aa09570660ac82de921d365ff9893207a288be43f503</cites><orcidid>0000-0003-2565-5735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40590-023-00517-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40590-023-00517-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Van Loi, Do</creatorcontrib><creatorcontrib>Van Tuan, Tran</creatorcontrib><title>Stability analysis for a class of semilinear nonlocal evolution equations</title><title>Boletín de la Sociedad Matemática Mexicana</title><addtitle>Bol. Soc. Mat. Mex</addtitle><description>Our aim is to analyze some sufficient conditions ensuring the global solvability and stability of solutions to a class of nonlocal partial differential equations with nonlinear term, which describes numerous processes involving memory. By using the theory of completely positive functions, local estimates and fixed point arguments, we obtain some results on asymptotic stability and existence of decay solutions to our problem.</description><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><issn>1405-213X</issn><issn>2296-4495</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGr_gKuA6-jNa2aylOKjUHChgrtwZ5rIlOmkTWaE9tebWsGdq3sW3zlcPkKuOdxygPIuKdAGGAjJADQv2eGMTIQwBVPK6HMy4RlggsuPSzJLaQ0AnEvQoCdk8Tpg3XbtsKfYY7dPbaI-RIq06TAlGjxNbpOB3mGkfei70GBH3VfoxqENPXW7EY8hXZELj11ys987Je-PD2_zZ7Z8eVrM75esESUMTHlXQ12YWhWFrqrao1KACEaXUBSATSVWzgi-koX23lRGCihRZNIp6TXIKbk57W5j2I0uDXYdxph_T1ZUQkIlSiEyJU5UE0NK0Xm7je0G495ysEdr9mTNZmv2x5o95JI8lVKG-08X_6b_aX0DJ-Vv1g</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Van Loi, Do</creator><creator>Van Tuan, Tran</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2565-5735</orcidid></search><sort><creationdate>20230701</creationdate><title>Stability analysis for a class of semilinear nonlocal evolution equations</title><author>Van Loi, Do ; Van Tuan, Tran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-4feb0b69b466588bfa440aa09570660ac82de921d365ff9893207a288be43f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Loi, Do</creatorcontrib><creatorcontrib>Van Tuan, Tran</creatorcontrib><collection>CrossRef</collection><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Loi, Do</au><au>Van Tuan, Tran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis for a class of semilinear nonlocal evolution equations</atitle><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle><stitle>Bol. Soc. Mat. Mex</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>29</volume><issue>2</issue><artnum>46</artnum><issn>1405-213X</issn><eissn>2296-4495</eissn><abstract>Our aim is to analyze some sufficient conditions ensuring the global solvability and stability of solutions to a class of nonlocal partial differential equations with nonlinear term, which describes numerous processes involving memory. By using the theory of completely positive functions, local estimates and fixed point arguments, we obtain some results on asymptotic stability and existence of decay solutions to our problem.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40590-023-00517-z</doi><orcidid>https://orcid.org/0000-0003-2565-5735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1405-213X
ispartof Boletín de la Sociedad Matemática Mexicana, 2023-07, Vol.29 (2), Article 46
issn 1405-213X
2296-4495
language eng
recordid cdi_proquest_journals_2823082722
source SpringerLink Journals
subjects Fixed points (mathematics)
Mathematical analysis
Mathematics
Mathematics and Statistics
Original Article
Partial differential equations
Stability analysis
title Stability analysis for a class of semilinear nonlocal evolution equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20for%20a%20class%20of%20semilinear%20nonlocal%20evolution%20equations&rft.jtitle=Bolet%C3%ADn%20de%20la%20Sociedad%20Matem%C3%A1tica%20Mexicana&rft.au=Van%20Loi,%20Do&rft.date=2023-07-01&rft.volume=29&rft.issue=2&rft.artnum=46&rft.issn=1405-213X&rft.eissn=2296-4495&rft_id=info:doi/10.1007/s40590-023-00517-z&rft_dat=%3Cproquest_cross%3E2823082722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2823082722&rft_id=info:pmid/&rfr_iscdi=true