Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models

Numerous pre-training techniques for visual document understanding (VDU) have recently shown substantial improvements in performance across a wide range of document tasks. However, these pre-trained VDU models cannot guarantee continued success when the distribution of test data differs from the dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: He, Jiabang, Hu, Yi, Wang, Lei, Xu, Xing, Liu, Ning, Liu, Hui, Heng Tao Shen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator He, Jiabang
Hu, Yi
Wang, Lei
Xu, Xing
Liu, Ning
Liu, Hui
Heng Tao Shen
description Numerous pre-training techniques for visual document understanding (VDU) have recently shown substantial improvements in performance across a wide range of document tasks. However, these pre-trained VDU models cannot guarantee continued success when the distribution of test data differs from the distribution of training data. In this paper, to investigate how robust existing pre-trained VDU models are to various distribution shifts, we first develop an out-of-distribution (OOD) benchmark termed Do-GOOD for the fine-Grained analysis on Document image-related tasks specifically. The Do-GOOD benchmark defines the underlying mechanisms that result in different distribution shifts and contains 9 OOD datasets covering 3 VDU related tasks, e.g., document information extraction, classification and question answering. We then evaluate the robustness and perform a fine-grained analysis of 5 latest VDU pre-trained models and 2 typical OOD generalization algorithms on these OOD datasets. Results from the experiments demonstrate that there is a significant performance gap between the in-distribution (ID) and OOD settings for document images, and that fine-grained analysis of distribution shifts can reveal the brittle nature of existing pre-trained VDU models and OOD generalization algorithms. The code and datasets for our Do-GOOD benchmark can be found at https://github.com/MAEHCM/Do-GOOD.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2822890612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822890612</sourcerecordid><originalsourceid>FETCH-proquest_journals_28228906123</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC60L5arW6tn41UsLqV2KQaqYnmJXp9RTyAq4GZ6bAA0zSJ8hFij4VE1ziOcTzBLEsDVhcmWpVlMYPKvLgVBIUiZ9XJO2U07C6qcbB48tbzr2iMha2VUWW50lLAQZHnLRSm9jepHey1kJYc10LpM2yMkC0NWLfhLcnwxz4bLhfVfB3drXl4Se54Nd7qTzpijphP43GC6X_XG2W5RYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822890612</pqid></control><display><type>article</type><title>Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models</title><source>Free E- Journals</source><creator>He, Jiabang ; Hu, Yi ; Wang, Lei ; Xu, Xing ; Liu, Ning ; Liu, Hui ; Heng Tao Shen</creator><creatorcontrib>He, Jiabang ; Hu, Yi ; Wang, Lei ; Xu, Xing ; Liu, Ning ; Liu, Hui ; Heng Tao Shen</creatorcontrib><description>Numerous pre-training techniques for visual document understanding (VDU) have recently shown substantial improvements in performance across a wide range of document tasks. However, these pre-trained VDU models cannot guarantee continued success when the distribution of test data differs from the distribution of training data. In this paper, to investigate how robust existing pre-trained VDU models are to various distribution shifts, we first develop an out-of-distribution (OOD) benchmark termed Do-GOOD for the fine-Grained analysis on Document image-related tasks specifically. The Do-GOOD benchmark defines the underlying mechanisms that result in different distribution shifts and contains 9 OOD datasets covering 3 VDU related tasks, e.g., document information extraction, classification and question answering. We then evaluate the robustness and perform a fine-grained analysis of 5 latest VDU pre-trained models and 2 typical OOD generalization algorithms on these OOD datasets. Results from the experiments demonstrate that there is a significant performance gap between the in-distribution (ID) and OOD settings for document images, and that fine-grained analysis of distribution shifts can reveal the brittle nature of existing pre-trained VDU models and OOD generalization algorithms. The code and datasets for our Do-GOOD benchmark can be found at https://github.com/MAEHCM/Do-GOOD.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Benchmarks ; Datasets ; Documents ; Information retrieval ; Training</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>He, Jiabang</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Xu, Xing</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Heng Tao Shen</creatorcontrib><title>Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models</title><title>arXiv.org</title><description>Numerous pre-training techniques for visual document understanding (VDU) have recently shown substantial improvements in performance across a wide range of document tasks. However, these pre-trained VDU models cannot guarantee continued success when the distribution of test data differs from the distribution of training data. In this paper, to investigate how robust existing pre-trained VDU models are to various distribution shifts, we first develop an out-of-distribution (OOD) benchmark termed Do-GOOD for the fine-Grained analysis on Document image-related tasks specifically. The Do-GOOD benchmark defines the underlying mechanisms that result in different distribution shifts and contains 9 OOD datasets covering 3 VDU related tasks, e.g., document information extraction, classification and question answering. We then evaluate the robustness and perform a fine-grained analysis of 5 latest VDU pre-trained models and 2 typical OOD generalization algorithms on these OOD datasets. Results from the experiments demonstrate that there is a significant performance gap between the in-distribution (ID) and OOD settings for document images, and that fine-grained analysis of distribution shifts can reveal the brittle nature of existing pre-trained VDU models and OOD generalization algorithms. The code and datasets for our Do-GOOD benchmark can be found at https://github.com/MAEHCM/Do-GOOD.</description><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Datasets</subject><subject>Documents</subject><subject>Information retrieval</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC60L5arW6tn41UsLqV2KQaqYnmJXp9RTyAq4GZ6bAA0zSJ8hFij4VE1ziOcTzBLEsDVhcmWpVlMYPKvLgVBIUiZ9XJO2U07C6qcbB48tbzr2iMha2VUWW50lLAQZHnLRSm9jepHey1kJYc10LpM2yMkC0NWLfhLcnwxz4bLhfVfB3drXl4Se54Nd7qTzpijphP43GC6X_XG2W5RYQ</recordid><startdate>20230605</startdate><enddate>20230605</enddate><creator>He, Jiabang</creator><creator>Hu, Yi</creator><creator>Wang, Lei</creator><creator>Xu, Xing</creator><creator>Liu, Ning</creator><creator>Liu, Hui</creator><creator>Heng Tao Shen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230605</creationdate><title>Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models</title><author>He, Jiabang ; Hu, Yi ; Wang, Lei ; Xu, Xing ; Liu, Ning ; Liu, Hui ; Heng Tao Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28228906123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Datasets</topic><topic>Documents</topic><topic>Information retrieval</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Jiabang</creatorcontrib><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Xu, Xing</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Heng Tao Shen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jiabang</au><au>Hu, Yi</au><au>Wang, Lei</au><au>Xu, Xing</au><au>Liu, Ning</au><au>Liu, Hui</au><au>Heng Tao Shen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models</atitle><jtitle>arXiv.org</jtitle><date>2023-06-05</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Numerous pre-training techniques for visual document understanding (VDU) have recently shown substantial improvements in performance across a wide range of document tasks. However, these pre-trained VDU models cannot guarantee continued success when the distribution of test data differs from the distribution of training data. In this paper, to investigate how robust existing pre-trained VDU models are to various distribution shifts, we first develop an out-of-distribution (OOD) benchmark termed Do-GOOD for the fine-Grained analysis on Document image-related tasks specifically. The Do-GOOD benchmark defines the underlying mechanisms that result in different distribution shifts and contains 9 OOD datasets covering 3 VDU related tasks, e.g., document information extraction, classification and question answering. We then evaluate the robustness and perform a fine-grained analysis of 5 latest VDU pre-trained models and 2 typical OOD generalization algorithms on these OOD datasets. Results from the experiments demonstrate that there is a significant performance gap between the in-distribution (ID) and OOD settings for document images, and that fine-grained analysis of distribution shifts can reveal the brittle nature of existing pre-trained VDU models and OOD generalization algorithms. The code and datasets for our Do-GOOD benchmark can be found at https://github.com/MAEHCM/Do-GOOD.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2822890612
source Free E- Journals
subjects Algorithms
Benchmarks
Datasets
Documents
Information retrieval
Training
title Do-GOOD: Towards Distribution Shift Evaluation for Pre-Trained Visual Document Understanding Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Do-GOOD:%20Towards%20Distribution%20Shift%20Evaluation%20for%20Pre-Trained%20Visual%20Document%20Understanding%20Models&rft.jtitle=arXiv.org&rft.au=He,%20Jiabang&rft.date=2023-06-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2822890612%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822890612&rft_id=info:pmid/&rfr_iscdi=true