Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules
Ultracold polar molecules uniquely combine a rich structure of long-lived internal states with access to controllable long-range, anisotropic dipole-dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode int...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-08 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gregory, Philip D Fernley, Luke M Albert Li Tao Bromley, Sarah L Stepp, Jonathan Zhang, Zewen Kotochigova, Svetlana Hazzard, Kaden R A Cornish, Simon L |
description | Ultracold polar molecules uniquely combine a rich structure of long-lived internal states with access to controllable long-range, anisotropic dipole-dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous light shifts. Here we demonstrate a rotationally-magic optical trap for RbCs molecules that supports a Ramsey coherence time of 0.78(4) seconds in the absence of dipole-dipole interactions. This extends to >1.4 seconds at the 95% confidence level using a single spin-echo pulse. In our magic trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2822890541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822890541</sourcerecordid><originalsourceid>FETCH-proquest_journals_28228905413</originalsourceid><addsrcrecordid>eNqNzcEKwjAQBNAgCBbtPyx4LtS01XoWxbve65JutSVmazb5fyv6AZ6GGR7MTCW6KDZZXWq9UKnIkOe53u50VRWJul3IsGszMWgJPAcMPTu0YPhBnpwhQNdC249s0UPvAnk0HyNTAYQ7CnAH0YZpZ9vCFz7ZkomWZKXmHVqh9JdLtT4dr4dzNnp-RZLQDBz99CiNrrWu93lVbor_1BsvN0Vb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822890541</pqid></control><display><type>article</type><title>Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules</title><source>Free E- Journals</source><creator>Gregory, Philip D ; Fernley, Luke M ; Albert Li Tao ; Bromley, Sarah L ; Stepp, Jonathan ; Zhang, Zewen ; Kotochigova, Svetlana ; Hazzard, Kaden R A ; Cornish, Simon L</creator><creatorcontrib>Gregory, Philip D ; Fernley, Luke M ; Albert Li Tao ; Bromley, Sarah L ; Stepp, Jonathan ; Zhang, Zewen ; Kotochigova, Svetlana ; Hazzard, Kaden R A ; Cornish, Simon L</creatorcontrib><description>Ultracold polar molecules uniquely combine a rich structure of long-lived internal states with access to controllable long-range, anisotropic dipole-dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous light shifts. Here we demonstrate a rotationally-magic optical trap for RbCs molecules that supports a Ramsey coherence time of 0.78(4) seconds in the absence of dipole-dipole interactions. This extends to >1.4 seconds at the 95% confidence level using a single spin-echo pulse. In our magic trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Charged particles ; Coherence ; Confidence intervals ; Controllability ; Dipole interactions ; Dipole moments ; Molecular structure ; Optical lattices ; Optical traps ; Quantum computing ; Qubits (quantum computing) ; Rotational states</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gregory, Philip D</creatorcontrib><creatorcontrib>Fernley, Luke M</creatorcontrib><creatorcontrib>Albert Li Tao</creatorcontrib><creatorcontrib>Bromley, Sarah L</creatorcontrib><creatorcontrib>Stepp, Jonathan</creatorcontrib><creatorcontrib>Zhang, Zewen</creatorcontrib><creatorcontrib>Kotochigova, Svetlana</creatorcontrib><creatorcontrib>Hazzard, Kaden R A</creatorcontrib><creatorcontrib>Cornish, Simon L</creatorcontrib><title>Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules</title><title>arXiv.org</title><description>Ultracold polar molecules uniquely combine a rich structure of long-lived internal states with access to controllable long-range, anisotropic dipole-dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous light shifts. Here we demonstrate a rotationally-magic optical trap for RbCs molecules that supports a Ramsey coherence time of 0.78(4) seconds in the absence of dipole-dipole interactions. This extends to >1.4 seconds at the 95% confidence level using a single spin-echo pulse. In our magic trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation.</description><subject>Charged particles</subject><subject>Coherence</subject><subject>Confidence intervals</subject><subject>Controllability</subject><subject>Dipole interactions</subject><subject>Dipole moments</subject><subject>Molecular structure</subject><subject>Optical lattices</subject><subject>Optical traps</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Rotational states</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzcEKwjAQBNAgCBbtPyx4LtS01XoWxbve65JutSVmazb5fyv6AZ6GGR7MTCW6KDZZXWq9UKnIkOe53u50VRWJul3IsGszMWgJPAcMPTu0YPhBnpwhQNdC249s0UPvAnk0HyNTAYQ7CnAH0YZpZ9vCFz7ZkomWZKXmHVqh9JdLtT4dr4dzNnp-RZLQDBz99CiNrrWu93lVbor_1BsvN0Vb</recordid><startdate>20230811</startdate><enddate>20230811</enddate><creator>Gregory, Philip D</creator><creator>Fernley, Luke M</creator><creator>Albert Li Tao</creator><creator>Bromley, Sarah L</creator><creator>Stepp, Jonathan</creator><creator>Zhang, Zewen</creator><creator>Kotochigova, Svetlana</creator><creator>Hazzard, Kaden R A</creator><creator>Cornish, Simon L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230811</creationdate><title>Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules</title><author>Gregory, Philip D ; Fernley, Luke M ; Albert Li Tao ; Bromley, Sarah L ; Stepp, Jonathan ; Zhang, Zewen ; Kotochigova, Svetlana ; Hazzard, Kaden R A ; Cornish, Simon L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28228905413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Charged particles</topic><topic>Coherence</topic><topic>Confidence intervals</topic><topic>Controllability</topic><topic>Dipole interactions</topic><topic>Dipole moments</topic><topic>Molecular structure</topic><topic>Optical lattices</topic><topic>Optical traps</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Rotational states</topic><toplevel>online_resources</toplevel><creatorcontrib>Gregory, Philip D</creatorcontrib><creatorcontrib>Fernley, Luke M</creatorcontrib><creatorcontrib>Albert Li Tao</creatorcontrib><creatorcontrib>Bromley, Sarah L</creatorcontrib><creatorcontrib>Stepp, Jonathan</creatorcontrib><creatorcontrib>Zhang, Zewen</creatorcontrib><creatorcontrib>Kotochigova, Svetlana</creatorcontrib><creatorcontrib>Hazzard, Kaden R A</creatorcontrib><creatorcontrib>Cornish, Simon L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gregory, Philip D</au><au>Fernley, Luke M</au><au>Albert Li Tao</au><au>Bromley, Sarah L</au><au>Stepp, Jonathan</au><au>Zhang, Zewen</au><au>Kotochigova, Svetlana</au><au>Hazzard, Kaden R A</au><au>Cornish, Simon L</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules</atitle><jtitle>arXiv.org</jtitle><date>2023-08-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Ultracold polar molecules uniquely combine a rich structure of long-lived internal states with access to controllable long-range, anisotropic dipole-dipole interactions. In particular, the rotational states of polar molecules confined in optical tweezers or optical lattices may be used to encode interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism. As with all quantum platforms, the engineering of robust coherent superpositions of states is vital. However, for optically trapped molecules, the coherence time between rotational states is typically limited by inhomogeneous light shifts. Here we demonstrate a rotationally-magic optical trap for RbCs molecules that supports a Ramsey coherence time of 0.78(4) seconds in the absence of dipole-dipole interactions. This extends to >1.4 seconds at the 95% confidence level using a single spin-echo pulse. In our magic trap, dipolar interactions become the dominant mechanism by which Ramsey contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming the superposition, we tune the effective dipole moment and show that the coherence time is inversely proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the rotational degree of freedom in molecules for quantum computation and quantum simulation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2822890541 |
source | Free E- Journals |
subjects | Charged particles Coherence Confidence intervals Controllability Dipole interactions Dipole moments Molecular structure Optical lattices Optical traps Quantum computing Qubits (quantum computing) Rotational states |
title | Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Second-scale%20rotational%20coherence%20and%20dipolar%20interactions%20in%20a%20gas%20of%20ultracold%20polar%20molecules&rft.jtitle=arXiv.org&rft.au=Gregory,%20Philip%20D&rft.date=2023-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2822890541%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822890541&rft_id=info:pmid/&rfr_iscdi=true |