Segment Anything Meets Semantic Communication

In light of the diminishing returns of traditional methods for enhancing transmission rates, the domain of semantic communication presents promising new frontiers. Focusing on image transmission, this paper explores the application of foundation models, particularly the Segment Anything Model (SAM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Shehbaz Tariq, Arfeto, Brian Estadimas, Zhang, Chaoning, Shin, Hyundong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shehbaz Tariq
Arfeto, Brian Estadimas
Zhang, Chaoning
Shin, Hyundong
description In light of the diminishing returns of traditional methods for enhancing transmission rates, the domain of semantic communication presents promising new frontiers. Focusing on image transmission, this paper explores the application of foundation models, particularly the Segment Anything Model (SAM) developed by Meta AI Research, to improve semantic communication. SAM is a promptable image segmentation model that has gained attention for its ability to perform zero-shot segmentation tasks without explicit training or domain-specific knowledge. By employing SAM's segmentation capability and lightweight neural network architecture for semantic coding, we propose a practical approach to semantic communication. We demonstrate that this approach retains critical semantic features, achieving higher image reconstruction quality and reducing communication overhead. This practical solution eliminates the resource-intensive stage of training a segmentation model and can be applied to any semantic coding architecture, paving the way for real-world applications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2822890123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822890123</sourcerecordid><originalsourceid>FETCH-proquest_journals_28228901233</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDU5Nz03NK1FwzKssycjMS1fwTU0tKVYITs1NzCvJTFZwzs_NLc3LTE4syczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLIyMLSwNDoN3EqQIAyZQyGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822890123</pqid></control><display><type>article</type><title>Segment Anything Meets Semantic Communication</title><source>Free E- Journals</source><creator>Shehbaz Tariq ; Arfeto, Brian Estadimas ; Zhang, Chaoning ; Shin, Hyundong</creator><creatorcontrib>Shehbaz Tariq ; Arfeto, Brian Estadimas ; Zhang, Chaoning ; Shin, Hyundong</creatorcontrib><description>In light of the diminishing returns of traditional methods for enhancing transmission rates, the domain of semantic communication presents promising new frontiers. Focusing on image transmission, this paper explores the application of foundation models, particularly the Segment Anything Model (SAM) developed by Meta AI Research, to improve semantic communication. SAM is a promptable image segmentation model that has gained attention for its ability to perform zero-shot segmentation tasks without explicit training or domain-specific knowledge. By employing SAM's segmentation capability and lightweight neural network architecture for semantic coding, we propose a practical approach to semantic communication. We demonstrate that this approach retains critical semantic features, achieving higher image reconstruction quality and reducing communication overhead. This practical solution eliminates the resource-intensive stage of training a segmentation model and can be applied to any semantic coding architecture, paving the way for real-world applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Computer architecture ; Image quality ; Image reconstruction ; Image segmentation ; Image transmission ; Neural networks ; Semantics ; Training</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Shehbaz Tariq</creatorcontrib><creatorcontrib>Arfeto, Brian Estadimas</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Shin, Hyundong</creatorcontrib><title>Segment Anything Meets Semantic Communication</title><title>arXiv.org</title><description>In light of the diminishing returns of traditional methods for enhancing transmission rates, the domain of semantic communication presents promising new frontiers. Focusing on image transmission, this paper explores the application of foundation models, particularly the Segment Anything Model (SAM) developed by Meta AI Research, to improve semantic communication. SAM is a promptable image segmentation model that has gained attention for its ability to perform zero-shot segmentation tasks without explicit training or domain-specific knowledge. By employing SAM's segmentation capability and lightweight neural network architecture for semantic coding, we propose a practical approach to semantic communication. We demonstrate that this approach retains critical semantic features, achieving higher image reconstruction quality and reducing communication overhead. This practical solution eliminates the resource-intensive stage of training a segmentation model and can be applied to any semantic coding architecture, paving the way for real-world applications.</description><subject>Coding</subject><subject>Computer architecture</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image segmentation</subject><subject>Image transmission</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDU5Nz03NK1FwzKssycjMS1fwTU0tKVYITs1NzCvJTFZwzs_NLc3LTE4syczP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLIyMLSwNDoN3EqQIAyZQyGQ</recordid><startdate>20230603</startdate><enddate>20230603</enddate><creator>Shehbaz Tariq</creator><creator>Arfeto, Brian Estadimas</creator><creator>Zhang, Chaoning</creator><creator>Shin, Hyundong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230603</creationdate><title>Segment Anything Meets Semantic Communication</title><author>Shehbaz Tariq ; Arfeto, Brian Estadimas ; Zhang, Chaoning ; Shin, Hyundong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28228901233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coding</topic><topic>Computer architecture</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image segmentation</topic><topic>Image transmission</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Shehbaz Tariq</creatorcontrib><creatorcontrib>Arfeto, Brian Estadimas</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Shin, Hyundong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shehbaz Tariq</au><au>Arfeto, Brian Estadimas</au><au>Zhang, Chaoning</au><au>Shin, Hyundong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Segment Anything Meets Semantic Communication</atitle><jtitle>arXiv.org</jtitle><date>2023-06-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In light of the diminishing returns of traditional methods for enhancing transmission rates, the domain of semantic communication presents promising new frontiers. Focusing on image transmission, this paper explores the application of foundation models, particularly the Segment Anything Model (SAM) developed by Meta AI Research, to improve semantic communication. SAM is a promptable image segmentation model that has gained attention for its ability to perform zero-shot segmentation tasks without explicit training or domain-specific knowledge. By employing SAM's segmentation capability and lightweight neural network architecture for semantic coding, we propose a practical approach to semantic communication. We demonstrate that this approach retains critical semantic features, achieving higher image reconstruction quality and reducing communication overhead. This practical solution eliminates the resource-intensive stage of training a segmentation model and can be applied to any semantic coding architecture, paving the way for real-world applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2822890123
source Free E- Journals
subjects Coding
Computer architecture
Image quality
Image reconstruction
Image segmentation
Image transmission
Neural networks
Semantics
Training
title Segment Anything Meets Semantic Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Segment%20Anything%20Meets%20Semantic%20Communication&rft.jtitle=arXiv.org&rft.au=Shehbaz%20Tariq&rft.date=2023-06-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2822890123%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822890123&rft_id=info:pmid/&rfr_iscdi=true