Microstructural, Mössbauer, thermal and dielectric studies of ZnFeCoO4 spinel oxide for optoelectronic applications

In this article, we have investigated the structural, Mossbauer, thermal and dielectric properties of the ZnFeCoO 4 spinel oxide elaborated using the sol–gel process. We have used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the microstructural properties of our sample....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2023-06, Vol.34 (16), p.1298, Article 1298
Hauptverfasser: Horchani, M., Seif Eddine, M., Omri, Aref, Benali, A., Taoufik, Mnasri, Dhahri, E., Valente, M. A., Costa, B. F. O., Ben Younes, Rached
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 1298
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Horchani, M.
Seif Eddine, M.
Omri, Aref
Benali, A.
Taoufik, Mnasri
Dhahri, E.
Valente, M. A.
Costa, B. F. O.
Ben Younes, Rached
description In this article, we have investigated the structural, Mossbauer, thermal and dielectric properties of the ZnFeCoO 4 spinel oxide elaborated using the sol–gel process. We have used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the microstructural properties of our sample. The XRD pattern shows the formation of the ZnFeCoO 4 compound as the main phase, matched with the cubic spinel structure, as well as a secondary phase of ZnO was also identified. The SEM micrograph shows the spherical shape of grains with porosity. The Raman spectra reveal five Raman active optical modes (A 1g  + E g  + 3T 2g ), confirming the spinel structure of the prepared sample. The electrical conductivity measurements were analyzed using Jonscher universal power law σ ω = σ dc + A ω p . The temperature dependence of the exponent p suggests that the non-overlapping small polaron tunneling model (NSPT) is the appropriate conduction mechanism within the synthesized sample. The variation of dielectric permittivity is explained in terms of interfacial polarization based on the Maxwell–Wagner theory. The plots of the imaginary parts of the modulus ( M ″) reveals two specific relaxation frequency shifted to higher frequencies with increasing temperature. The activation energies deduced from the dc conductivity and electrical modulus are comparable implying that the relaxation and conduction processes are caused by the same type of charge carriers. Nyquist plots ( Z ″ vs. Z ′) were well adjusted using an equivalent circuit that includes both grain and grain boundary response, hence, the equivalent circuit configuration is a type of [( R g //CPE g ) + ( R gb //CPE gb )].
doi_str_mv 10.1007/s10854-023-10600-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822883363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822883363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-41387864b1e2fbc26cef7d42ad73beb2fae7e5d8d833641a82aec9aa640af7603</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI6-gKuA24nmr21mKYOjwgyzURA3IU1vNVKbmqSMvpgv4IvZsYI7V5cD5zsXPoROGT1nlBYXkVGVSUK5IIzmlJLtHpqwrBBEKv6wjyZ0nhVEZpwfoqMYXyiluRRqgtLa2eBjCr1NfTDNDK-_PmMsTQ9hhtMzhFfTYNNWuHLQgE3BWRxTP6SIfY0f2yUs_Ebi2LkWGuzfXQW49gH7LvmR8O3AmK5rnDXJ-TYeo4PaNBFOfu8U3S-v7hY3ZLW5vl1crogVbJ6IZEIVKpclA16XlucW6qKS3FSFKKHktYECskpVSohcMqO4ATs3JpfU1EVOxRSdjbtd8G89xKRffB_a4aXminO148TQ4mNrJyIGqHUX3KsJH5pRvbOrR7t6sKt_7OrtAIkRikO5fYLwN_0P9Q20v4Ee</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822883363</pqid></control><display><type>article</type><title>Microstructural, Mössbauer, thermal and dielectric studies of ZnFeCoO4 spinel oxide for optoelectronic applications</title><source>SpringerLink</source><creator>Horchani, M. ; Seif Eddine, M. ; Omri, Aref ; Benali, A. ; Taoufik, Mnasri ; Dhahri, E. ; Valente, M. A. ; Costa, B. F. O. ; Ben Younes, Rached</creator><creatorcontrib>Horchani, M. ; Seif Eddine, M. ; Omri, Aref ; Benali, A. ; Taoufik, Mnasri ; Dhahri, E. ; Valente, M. A. ; Costa, B. F. O. ; Ben Younes, Rached</creatorcontrib><description>In this article, we have investigated the structural, Mossbauer, thermal and dielectric properties of the ZnFeCoO 4 spinel oxide elaborated using the sol–gel process. We have used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the microstructural properties of our sample. The XRD pattern shows the formation of the ZnFeCoO 4 compound as the main phase, matched with the cubic spinel structure, as well as a secondary phase of ZnO was also identified. The SEM micrograph shows the spherical shape of grains with porosity. The Raman spectra reveal five Raman active optical modes (A 1g  + E g  + 3T 2g ), confirming the spinel structure of the prepared sample. The electrical conductivity measurements were analyzed using Jonscher universal power law σ ω = σ dc + A ω p . The temperature dependence of the exponent p suggests that the non-overlapping small polaron tunneling model (NSPT) is the appropriate conduction mechanism within the synthesized sample. The variation of dielectric permittivity is explained in terms of interfacial polarization based on the Maxwell–Wagner theory. The plots of the imaginary parts of the modulus ( M ″) reveals two specific relaxation frequency shifted to higher frequencies with increasing temperature. The activation energies deduced from the dc conductivity and electrical modulus are comparable implying that the relaxation and conduction processes are caused by the same type of charge carriers. Nyquist plots ( Z ″ vs. Z ′) were well adjusted using an equivalent circuit that includes both grain and grain boundary response, hence, the equivalent circuit configuration is a type of [( R g //CPE g ) + ( R gb //CPE gb )].</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10600-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Current carriers ; Dielectric properties ; Electrical resistivity ; Equivalent circuits ; Grain boundaries ; Materials Science ; Nyquist plots ; Optical and Electronic Materials ; Optoelectronics ; Phase matching ; Photomicrographs ; Raman spectra ; Scanning electron microscopy ; Sol-gel processes ; Spinel ; Temperature dependence ; X-ray diffraction ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2023-06, Vol.34 (16), p.1298, Article 1298</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-41387864b1e2fbc26cef7d42ad73beb2fae7e5d8d833641a82aec9aa640af7603</citedby><cites>FETCH-LOGICAL-c319t-41387864b1e2fbc26cef7d42ad73beb2fae7e5d8d833641a82aec9aa640af7603</cites><orcidid>0000-0002-2746-5401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-10600-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-10600-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Horchani, M.</creatorcontrib><creatorcontrib>Seif Eddine, M.</creatorcontrib><creatorcontrib>Omri, Aref</creatorcontrib><creatorcontrib>Benali, A.</creatorcontrib><creatorcontrib>Taoufik, Mnasri</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Valente, M. A.</creatorcontrib><creatorcontrib>Costa, B. F. O.</creatorcontrib><creatorcontrib>Ben Younes, Rached</creatorcontrib><title>Microstructural, Mössbauer, thermal and dielectric studies of ZnFeCoO4 spinel oxide for optoelectronic applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this article, we have investigated the structural, Mossbauer, thermal and dielectric properties of the ZnFeCoO 4 spinel oxide elaborated using the sol–gel process. We have used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the microstructural properties of our sample. The XRD pattern shows the formation of the ZnFeCoO 4 compound as the main phase, matched with the cubic spinel structure, as well as a secondary phase of ZnO was also identified. The SEM micrograph shows the spherical shape of grains with porosity. The Raman spectra reveal five Raman active optical modes (A 1g  + E g  + 3T 2g ), confirming the spinel structure of the prepared sample. The electrical conductivity measurements were analyzed using Jonscher universal power law σ ω = σ dc + A ω p . The temperature dependence of the exponent p suggests that the non-overlapping small polaron tunneling model (NSPT) is the appropriate conduction mechanism within the synthesized sample. The variation of dielectric permittivity is explained in terms of interfacial polarization based on the Maxwell–Wagner theory. The plots of the imaginary parts of the modulus ( M ″) reveals two specific relaxation frequency shifted to higher frequencies with increasing temperature. The activation energies deduced from the dc conductivity and electrical modulus are comparable implying that the relaxation and conduction processes are caused by the same type of charge carriers. Nyquist plots ( Z ″ vs. Z ′) were well adjusted using an equivalent circuit that includes both grain and grain boundary response, hence, the equivalent circuit configuration is a type of [( R g //CPE g ) + ( R gb //CPE gb )].</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Current carriers</subject><subject>Dielectric properties</subject><subject>Electrical resistivity</subject><subject>Equivalent circuits</subject><subject>Grain boundaries</subject><subject>Materials Science</subject><subject>Nyquist plots</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Phase matching</subject><subject>Photomicrographs</subject><subject>Raman spectra</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spinel</subject><subject>Temperature dependence</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1KxDAUhYMoOI6-gKuA24nmr21mKYOjwgyzURA3IU1vNVKbmqSMvpgv4IvZsYI7V5cD5zsXPoROGT1nlBYXkVGVSUK5IIzmlJLtHpqwrBBEKv6wjyZ0nhVEZpwfoqMYXyiluRRqgtLa2eBjCr1NfTDNDK-_PmMsTQ9hhtMzhFfTYNNWuHLQgE3BWRxTP6SIfY0f2yUs_Ebi2LkWGuzfXQW49gH7LvmR8O3AmK5rnDXJ-TYeo4PaNBFOfu8U3S-v7hY3ZLW5vl1crogVbJ6IZEIVKpclA16XlucW6qKS3FSFKKHktYECskpVSohcMqO4ATs3JpfU1EVOxRSdjbtd8G89xKRffB_a4aXminO148TQ4mNrJyIGqHUX3KsJH5pRvbOrR7t6sKt_7OrtAIkRikO5fYLwN_0P9Q20v4Ee</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Horchani, M.</creator><creator>Seif Eddine, M.</creator><creator>Omri, Aref</creator><creator>Benali, A.</creator><creator>Taoufik, Mnasri</creator><creator>Dhahri, E.</creator><creator>Valente, M. A.</creator><creator>Costa, B. F. O.</creator><creator>Ben Younes, Rached</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2746-5401</orcidid></search><sort><creationdate>20230601</creationdate><title>Microstructural, Mössbauer, thermal and dielectric studies of ZnFeCoO4 spinel oxide for optoelectronic applications</title><author>Horchani, M. ; Seif Eddine, M. ; Omri, Aref ; Benali, A. ; Taoufik, Mnasri ; Dhahri, E. ; Valente, M. A. ; Costa, B. F. O. ; Ben Younes, Rached</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-41387864b1e2fbc26cef7d42ad73beb2fae7e5d8d833641a82aec9aa640af7603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Current carriers</topic><topic>Dielectric properties</topic><topic>Electrical resistivity</topic><topic>Equivalent circuits</topic><topic>Grain boundaries</topic><topic>Materials Science</topic><topic>Nyquist plots</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Phase matching</topic><topic>Photomicrographs</topic><topic>Raman spectra</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spinel</topic><topic>Temperature dependence</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horchani, M.</creatorcontrib><creatorcontrib>Seif Eddine, M.</creatorcontrib><creatorcontrib>Omri, Aref</creatorcontrib><creatorcontrib>Benali, A.</creatorcontrib><creatorcontrib>Taoufik, Mnasri</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Valente, M. A.</creatorcontrib><creatorcontrib>Costa, B. F. O.</creatorcontrib><creatorcontrib>Ben Younes, Rached</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horchani, M.</au><au>Seif Eddine, M.</au><au>Omri, Aref</au><au>Benali, A.</au><au>Taoufik, Mnasri</au><au>Dhahri, E.</au><au>Valente, M. A.</au><au>Costa, B. F. O.</au><au>Ben Younes, Rached</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural, Mössbauer, thermal and dielectric studies of ZnFeCoO4 spinel oxide for optoelectronic applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>16</issue><spage>1298</spage><pages>1298-</pages><artnum>1298</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this article, we have investigated the structural, Mossbauer, thermal and dielectric properties of the ZnFeCoO 4 spinel oxide elaborated using the sol–gel process. We have used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the microstructural properties of our sample. The XRD pattern shows the formation of the ZnFeCoO 4 compound as the main phase, matched with the cubic spinel structure, as well as a secondary phase of ZnO was also identified. The SEM micrograph shows the spherical shape of grains with porosity. The Raman spectra reveal five Raman active optical modes (A 1g  + E g  + 3T 2g ), confirming the spinel structure of the prepared sample. The electrical conductivity measurements were analyzed using Jonscher universal power law σ ω = σ dc + A ω p . The temperature dependence of the exponent p suggests that the non-overlapping small polaron tunneling model (NSPT) is the appropriate conduction mechanism within the synthesized sample. The variation of dielectric permittivity is explained in terms of interfacial polarization based on the Maxwell–Wagner theory. The plots of the imaginary parts of the modulus ( M ″) reveals two specific relaxation frequency shifted to higher frequencies with increasing temperature. The activation energies deduced from the dc conductivity and electrical modulus are comparable implying that the relaxation and conduction processes are caused by the same type of charge carriers. Nyquist plots ( Z ″ vs. Z ′) were well adjusted using an equivalent circuit that includes both grain and grain boundary response, hence, the equivalent circuit configuration is a type of [( R g //CPE g ) + ( R gb //CPE gb )].</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10600-w</doi><orcidid>https://orcid.org/0000-0002-2746-5401</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-06, Vol.34 (16), p.1298, Article 1298
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2822883363
source SpringerLink
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Current carriers
Dielectric properties
Electrical resistivity
Equivalent circuits
Grain boundaries
Materials Science
Nyquist plots
Optical and Electronic Materials
Optoelectronics
Phase matching
Photomicrographs
Raman spectra
Scanning electron microscopy
Sol-gel processes
Spinel
Temperature dependence
X-ray diffraction
Zinc oxide
title Microstructural, Mössbauer, thermal and dielectric studies of ZnFeCoO4 spinel oxide for optoelectronic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T17%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural,%20M%C3%B6ssbauer,%20thermal%20and%20dielectric%20studies%20of%20ZnFeCoO4%20spinel%20oxide%20for%20optoelectronic%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Horchani,%20M.&rft.date=2023-06-01&rft.volume=34&rft.issue=16&rft.spage=1298&rft.pages=1298-&rft.artnum=1298&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10600-w&rft_dat=%3Cproquest_cross%3E2822883363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822883363&rft_id=info:pmid/&rfr_iscdi=true