PQ-Type Adjacency Polytopes of Join Graphs

PQ-type adjacency polytopes ∇ P Q G are lattice polytopes arising from finite graphs G . There is a connection between ∇ P Q G and the engineering problem known as power-flow study, which models the balance of electric power on a network of power generation. In particular, the normalized volume of ∇...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2023-07, Vol.70 (1), p.214-235
Hauptverfasser: Ohsugi, Hidefumi, Tsuchiya, Akiyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 1
container_start_page 214
container_title Discrete & computational geometry
container_volume 70
creator Ohsugi, Hidefumi
Tsuchiya, Akiyoshi
description PQ-type adjacency polytopes ∇ P Q G are lattice polytopes arising from finite graphs G . There is a connection between ∇ P Q G and the engineering problem known as power-flow study, which models the balance of electric power on a network of power generation. In particular, the normalized volume of ∇ P Q G plays a central role. In the present paper, we focus on the case where G is a join graph. In particular, formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G of a join graph G are presented. Moreover, we give explicit formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G when G is a complete multipartite graph or a wheel graph.
doi_str_mv 10.1007/s00454-022-00447-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822881955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822881955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-26ccc283c026d7287f8af43b4d8fe1ed51320d5b651aa2f3afdada2d9e75cc573</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCNyGaTJJN9liKVqVghXoOaT60pW7WpD1sf73RFbx5mhl43nfgQeiSkhtKiLzNhHDBMQHAZeMSH47QiHJWTs75MRoRKhssmKxP0VnOG1KohqgRul684GXf-WriNsb61vbVIm77Xex8rmKonuK6rWbJdO_5HJ0Es83-4neO0ev93XL6gOfPs8fpZI4th2aHobbWgmKWQO0kKBmUCZytuFPBU-8EZUCcWNWCGgOBmeCMM-AaL4W1QrIxuhp6uxQ_9z7v9CbuU1tealAAStFGiELBQNkUc04-6C6tP0zqNSX624kenOjiRP840YcSYkMoF7h98-mv-p_UFxxEY5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822881955</pqid></control><display><type>article</type><title>PQ-Type Adjacency Polytopes of Join Graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ohsugi, Hidefumi ; Tsuchiya, Akiyoshi</creator><creatorcontrib>Ohsugi, Hidefumi ; Tsuchiya, Akiyoshi</creatorcontrib><description>PQ-type adjacency polytopes ∇ P Q G are lattice polytopes arising from finite graphs G . There is a connection between ∇ P Q G and the engineering problem known as power-flow study, which models the balance of electric power on a network of power generation. In particular, the normalized volume of ∇ P Q G plays a central role. In the present paper, we focus on the case where G is a join graph. In particular, formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G of a join graph G are presented. Moreover, we give explicit formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G when G is a complete multipartite graph or a wheel graph.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-022-00447-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Electric power ; Geometry ; Graphs ; Mathematics ; Mathematics and Statistics ; Polynomials ; Polytopes ; Power flow</subject><ispartof>Discrete &amp; computational geometry, 2023-07, Vol.70 (1), p.214-235</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-26ccc283c026d7287f8af43b4d8fe1ed51320d5b651aa2f3afdada2d9e75cc573</citedby><cites>FETCH-LOGICAL-c429t-26ccc283c026d7287f8af43b4d8fe1ed51320d5b651aa2f3afdada2d9e75cc573</cites><orcidid>0000-0003-4189-1885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-022-00447-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-022-00447-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ohsugi, Hidefumi</creatorcontrib><creatorcontrib>Tsuchiya, Akiyoshi</creatorcontrib><title>PQ-Type Adjacency Polytopes of Join Graphs</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>PQ-type adjacency polytopes ∇ P Q G are lattice polytopes arising from finite graphs G . There is a connection between ∇ P Q G and the engineering problem known as power-flow study, which models the balance of electric power on a network of power generation. In particular, the normalized volume of ∇ P Q G plays a central role. In the present paper, we focus on the case where G is a join graph. In particular, formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G of a join graph G are presented. Moreover, we give explicit formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G when G is a complete multipartite graph or a wheel graph.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Electric power</subject><subject>Geometry</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Polytopes</subject><subject>Power flow</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCNyGaTJJN9liKVqVghXoOaT60pW7WpD1sf73RFbx5mhl43nfgQeiSkhtKiLzNhHDBMQHAZeMSH47QiHJWTs75MRoRKhssmKxP0VnOG1KohqgRul684GXf-WriNsb61vbVIm77Xex8rmKonuK6rWbJdO_5HJ0Es83-4neO0ev93XL6gOfPs8fpZI4th2aHobbWgmKWQO0kKBmUCZytuFPBU-8EZUCcWNWCGgOBmeCMM-AaL4W1QrIxuhp6uxQ_9z7v9CbuU1tealAAStFGiELBQNkUc04-6C6tP0zqNSX624kenOjiRP840YcSYkMoF7h98-mv-p_UFxxEY5k</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Ohsugi, Hidefumi</creator><creator>Tsuchiya, Akiyoshi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4189-1885</orcidid></search><sort><creationdate>20230701</creationdate><title>PQ-Type Adjacency Polytopes of Join Graphs</title><author>Ohsugi, Hidefumi ; Tsuchiya, Akiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-26ccc283c026d7287f8af43b4d8fe1ed51320d5b651aa2f3afdada2d9e75cc573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Electric power</topic><topic>Geometry</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Polytopes</topic><topic>Power flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohsugi, Hidefumi</creatorcontrib><creatorcontrib>Tsuchiya, Akiyoshi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohsugi, Hidefumi</au><au>Tsuchiya, Akiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PQ-Type Adjacency Polytopes of Join Graphs</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>214</spage><epage>235</epage><pages>214-235</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>PQ-type adjacency polytopes ∇ P Q G are lattice polytopes arising from finite graphs G . There is a connection between ∇ P Q G and the engineering problem known as power-flow study, which models the balance of electric power on a network of power generation. In particular, the normalized volume of ∇ P Q G plays a central role. In the present paper, we focus on the case where G is a join graph. In particular, formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G of a join graph G are presented. Moreover, we give explicit formulas of the h ∗ -polynomial and the normalized volume of ∇ P Q G when G is a complete multipartite graph or a wheel graph.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-022-00447-z</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4189-1885</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2023-07, Vol.70 (1), p.214-235
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_journals_2822881955
source SpringerLink Journals - AutoHoldings
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Electric power
Geometry
Graphs
Mathematics
Mathematics and Statistics
Polynomials
Polytopes
Power flow
title PQ-Type Adjacency Polytopes of Join Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PQ-Type%20Adjacency%20Polytopes%20of%20Join%20Graphs&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Ohsugi,%20Hidefumi&rft.date=2023-07-01&rft.volume=70&rft.issue=1&rft.spage=214&rft.epage=235&rft.pages=214-235&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-022-00447-z&rft_dat=%3Cproquest_cross%3E2822881955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822881955&rft_id=info:pmid/&rfr_iscdi=true