Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process

In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2023-06, Vol.58 (22), p.9297-9307
Hauptverfasser: Sadeghi, Zahra, Mansoorianfar, Mojtaba, Panjepour, Masoud, Meratian, Mahmood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9307
container_issue 22
container_start_page 9297
container_title Journal of materials science
container_volume 58
creator Sadeghi, Zahra
Mansoorianfar, Mojtaba
Panjepour, Masoud
Meratian, Mahmood
description In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.
doi_str_mv 10.1007/s10853-023-08563-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2822881851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752101480</galeid><sourcerecordid>A752101480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoodtNv0BPgpxycKI_9lp7DCFNAwuBJD0LWR45CmvL0cil_vaV60DIpQghGP3em2EeId85u-CM1ZfImapkwUS-qtrJQp2QDa9qWZSKyU9kw5gQhSh3_Av5ivjCGKtqwTfk-RDShEWaR6BjiGFC2ptuAPRTT8cY2skmHwb62xvqB4o-TXScYzjO6JEGlz_QBgQazZwx5xuIC2hoD8fkh24xsYB4Sj47c0T49vZuya8fN0_XP4vD_e3d9dWhsHIvUiGFExLakoEsq72zrW2chJ3ZubLeu9Ywpmwjpa1UK1pZl7wVja25Abu3ljdcbsnZ6pv7vk6ASb-EKQ65pRZKCKW4qhbqYqU6cwTtBxdSNDafFnpvwwDO5_pVXQnO-LLCLTn_IMhMgj-pMxOivnt8-MiKlbUxIEZweoy-N3HWnOklLr3GpXNc-l9cWmWRXEWY4aGD-D73f1R_ATKDmS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822881851</pqid></control><display><type>article</type><title>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</title><source>Springer journals</source><creator>Sadeghi, Zahra ; Mansoorianfar, Mojtaba ; Panjepour, Masoud ; Meratian, Mahmood</creator><creatorcontrib>Sadeghi, Zahra ; Mansoorianfar, Mojtaba ; Panjepour, Masoud ; Meratian, Mahmood</creatorcontrib><description>In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08563-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Foamed metals ; Foaming agents ; Founding ; Hydrogen ; Load bearing elements ; Magnesium ; Materials Science ; Mechanical properties ; Metal foams ; Metals &amp; Corrosion ; Polymer Sciences ; Porosity ; Production data ; Pyrolysis ; Rayon ; Solid Mechanics</subject><ispartof>Journal of materials science, 2023-06, Vol.58 (22), p.9297-9307</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</citedby><cites>FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</cites><orcidid>0000-0003-4406-9133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-08563-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-08563-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Sadeghi, Zahra</creatorcontrib><creatorcontrib>Mansoorianfar, Mojtaba</creatorcontrib><creatorcontrib>Panjepour, Masoud</creatorcontrib><creatorcontrib>Meratian, Mahmood</creatorcontrib><title>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Foamed metals</subject><subject>Foaming agents</subject><subject>Founding</subject><subject>Hydrogen</subject><subject>Load bearing elements</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal foams</subject><subject>Metals &amp; Corrosion</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Production data</subject><subject>Pyrolysis</subject><subject>Rayon</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9r3DAQxUVoodtNv0BPgpxycKI_9lp7DCFNAwuBJD0LWR45CmvL0cil_vaV60DIpQghGP3em2EeId85u-CM1ZfImapkwUS-qtrJQp2QDa9qWZSKyU9kw5gQhSh3_Av5ivjCGKtqwTfk-RDShEWaR6BjiGFC2ptuAPRTT8cY2skmHwb62xvqB4o-TXScYzjO6JEGlz_QBgQazZwx5xuIC2hoD8fkh24xsYB4Sj47c0T49vZuya8fN0_XP4vD_e3d9dWhsHIvUiGFExLakoEsq72zrW2chJ3ZubLeu9Ywpmwjpa1UK1pZl7wVja25Abu3ljdcbsnZ6pv7vk6ASb-EKQ65pRZKCKW4qhbqYqU6cwTtBxdSNDafFnpvwwDO5_pVXQnO-LLCLTn_IMhMgj-pMxOivnt8-MiKlbUxIEZweoy-N3HWnOklLr3GpXNc-l9cWmWRXEWY4aGD-D73f1R_ATKDmS4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sadeghi, Zahra</creator><creator>Mansoorianfar, Mojtaba</creator><creator>Panjepour, Masoud</creator><creator>Meratian, Mahmood</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4406-9133</orcidid></search><sort><creationdate>20230601</creationdate><title>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</title><author>Sadeghi, Zahra ; Mansoorianfar, Mojtaba ; Panjepour, Masoud ; Meratian, Mahmood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Foamed metals</topic><topic>Foaming agents</topic><topic>Founding</topic><topic>Hydrogen</topic><topic>Load bearing elements</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal foams</topic><topic>Metals &amp; Corrosion</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Production data</topic><topic>Pyrolysis</topic><topic>Rayon</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, Zahra</creatorcontrib><creatorcontrib>Mansoorianfar, Mojtaba</creatorcontrib><creatorcontrib>Panjepour, Masoud</creatorcontrib><creatorcontrib>Meratian, Mahmood</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, Zahra</au><au>Mansoorianfar, Mojtaba</au><au>Panjepour, Masoud</au><au>Meratian, Mahmood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>22</issue><spage>9297</spage><epage>9307</epage><pages>9297-9307</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08563-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4406-9133</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2023-06, Vol.58 (22), p.9297-9307
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2822881851
source Springer journals
subjects Characterization and Evaluation of Materials
Chemical composition
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Foamed metals
Foaming agents
Founding
Hydrogen
Load bearing elements
Magnesium
Materials Science
Mechanical properties
Metal foams
Metals & Corrosion
Polymer Sciences
Porosity
Production data
Pyrolysis
Rayon
Solid Mechanics
title Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lotus-type%20porous%20magnesium%20production%20via%20in%20situ%20pyrolysis%20of%20viscose%20rayon%20fiber%20in%20a%20melting%20process&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sadeghi,%20Zahra&rft.date=2023-06-01&rft.volume=58&rft.issue=22&rft.spage=9297&rft.epage=9307&rft.pages=9297-9307&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08563-8&rft_dat=%3Cgale_proqu%3EA752101480%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822881851&rft_id=info:pmid/&rft_galeid=A752101480&rfr_iscdi=true