Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process
In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar met...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2023-06, Vol.58 (22), p.9297-9307 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9307 |
---|---|
container_issue | 22 |
container_start_page | 9297 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Sadeghi, Zahra Mansoorianfar, Mojtaba Panjepour, Masoud Meratian, Mahmood |
description | In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures. |
doi_str_mv | 10.1007/s10853-023-08563-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2822881851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A752101480</galeid><sourcerecordid>A752101480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoodtNv0BPgpxycKI_9lp7DCFNAwuBJD0LWR45CmvL0cil_vaV60DIpQghGP3em2EeId85u-CM1ZfImapkwUS-qtrJQp2QDa9qWZSKyU9kw5gQhSh3_Av5ivjCGKtqwTfk-RDShEWaR6BjiGFC2ptuAPRTT8cY2skmHwb62xvqB4o-TXScYzjO6JEGlz_QBgQazZwx5xuIC2hoD8fkh24xsYB4Sj47c0T49vZuya8fN0_XP4vD_e3d9dWhsHIvUiGFExLakoEsq72zrW2chJ3ZubLeu9Ywpmwjpa1UK1pZl7wVja25Abu3ljdcbsnZ6pv7vk6ASb-EKQ65pRZKCKW4qhbqYqU6cwTtBxdSNDafFnpvwwDO5_pVXQnO-LLCLTn_IMhMgj-pMxOivnt8-MiKlbUxIEZweoy-N3HWnOklLr3GpXNc-l9cWmWRXEWY4aGD-D73f1R_ATKDmS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822881851</pqid></control><display><type>article</type><title>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</title><source>Springer journals</source><creator>Sadeghi, Zahra ; Mansoorianfar, Mojtaba ; Panjepour, Masoud ; Meratian, Mahmood</creator><creatorcontrib>Sadeghi, Zahra ; Mansoorianfar, Mojtaba ; Panjepour, Masoud ; Meratian, Mahmood</creatorcontrib><description>In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-08563-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemical composition ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Foamed metals ; Foaming agents ; Founding ; Hydrogen ; Load bearing elements ; Magnesium ; Materials Science ; Mechanical properties ; Metal foams ; Metals & Corrosion ; Polymer Sciences ; Porosity ; Production data ; Pyrolysis ; Rayon ; Solid Mechanics</subject><ispartof>Journal of materials science, 2023-06, Vol.58 (22), p.9297-9307</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</citedby><cites>FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</cites><orcidid>0000-0003-4406-9133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-08563-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-08563-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Sadeghi, Zahra</creatorcontrib><creatorcontrib>Mansoorianfar, Mojtaba</creatorcontrib><creatorcontrib>Panjepour, Masoud</creatorcontrib><creatorcontrib>Meratian, Mahmood</creatorcontrib><title>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Foamed metals</subject><subject>Foaming agents</subject><subject>Founding</subject><subject>Hydrogen</subject><subject>Load bearing elements</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal foams</subject><subject>Metals & Corrosion</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Production data</subject><subject>Pyrolysis</subject><subject>Rayon</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9r3DAQxUVoodtNv0BPgpxycKI_9lp7DCFNAwuBJD0LWR45CmvL0cil_vaV60DIpQghGP3em2EeId85u-CM1ZfImapkwUS-qtrJQp2QDa9qWZSKyU9kw5gQhSh3_Av5ivjCGKtqwTfk-RDShEWaR6BjiGFC2ptuAPRTT8cY2skmHwb62xvqB4o-TXScYzjO6JEGlz_QBgQazZwx5xuIC2hoD8fkh24xsYB4Sj47c0T49vZuya8fN0_XP4vD_e3d9dWhsHIvUiGFExLakoEsq72zrW2chJ3ZubLeu9Ywpmwjpa1UK1pZl7wVja25Abu3ljdcbsnZ6pv7vk6ASb-EKQ65pRZKCKW4qhbqYqU6cwTtBxdSNDafFnpvwwDO5_pVXQnO-LLCLTn_IMhMgj-pMxOivnt8-MiKlbUxIEZweoy-N3HWnOklLr3GpXNc-l9cWmWRXEWY4aGD-D73f1R_ATKDmS4</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sadeghi, Zahra</creator><creator>Mansoorianfar, Mojtaba</creator><creator>Panjepour, Masoud</creator><creator>Meratian, Mahmood</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4406-9133</orcidid></search><sort><creationdate>20230601</creationdate><title>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</title><author>Sadeghi, Zahra ; Mansoorianfar, Mojtaba ; Panjepour, Masoud ; Meratian, Mahmood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-32f23ed40e3459fcdcbf3e6a6f479fda008cb33c58d2d3741d2bc71aec9cc1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Foamed metals</topic><topic>Foaming agents</topic><topic>Founding</topic><topic>Hydrogen</topic><topic>Load bearing elements</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal foams</topic><topic>Metals & Corrosion</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Production data</topic><topic>Pyrolysis</topic><topic>Rayon</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadeghi, Zahra</creatorcontrib><creatorcontrib>Mansoorianfar, Mojtaba</creatorcontrib><creatorcontrib>Panjepour, Masoud</creatorcontrib><creatorcontrib>Meratian, Mahmood</creatorcontrib><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadeghi, Zahra</au><au>Mansoorianfar, Mojtaba</au><au>Panjepour, Masoud</au><au>Meratian, Mahmood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>58</volume><issue>22</issue><spage>9297</spage><epage>9307</epage><pages>9297-9307</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-08563-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4406-9133</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-06, Vol.58 (22), p.9297-9307 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2822881851 |
source | Springer journals |
subjects | Characterization and Evaluation of Materials Chemical composition Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Foamed metals Foaming agents Founding Hydrogen Load bearing elements Magnesium Materials Science Mechanical properties Metal foams Metals & Corrosion Polymer Sciences Porosity Production data Pyrolysis Rayon Solid Mechanics |
title | Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lotus-type%20porous%20magnesium%20production%20via%20in%20situ%20pyrolysis%20of%20viscose%20rayon%20fiber%20in%20a%20melting%20process&rft.jtitle=Journal%20of%20materials%20science&rft.au=Sadeghi,%20Zahra&rft.date=2023-06-01&rft.volume=58&rft.issue=22&rft.spage=9297&rft.epage=9307&rft.pages=9297-9307&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-08563-8&rft_dat=%3Cgale_proqu%3EA752101480%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822881851&rft_id=info:pmid/&rft_galeid=A752101480&rfr_iscdi=true |