A new Lean tool for efficiency evaluation in SMED projects

The ability of companies to rapidly conduct a changeover from one product to another as part of a production process is a fundamental step towards a more flexible production system that can deal with an increasingly dynamic and competitive market. Single-Minute Exchange of Die (SMED) is the best-kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-07, Vol.127 (1-2), p.431-446
Hauptverfasser: Braglia, Marcello, Di Paco, Francesco, Marrazzini, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of companies to rapidly conduct a changeover from one product to another as part of a production process is a fundamental step towards a more flexible production system that can deal with an increasingly dynamic and competitive market. Single-Minute Exchange of Die (SMED) is the best-known lean tool that aims to reduce time consumption in the changeover process. This paper presents a new lean tool called Set-up Saving Deployment (SSD), which improves set-up efficiency by classifying, analyzing, and removing set-up losses within a changeover process, and which supports decision-making for SMED implementation. SSD uses three matrices, constructed sequentially from the first (L-Matrix) to the last (ECE-Matrix), in order to assess the possible time savings that can be achieved by eliminating losses and, in addition, to forecast possible improvements resulting from implementing a SMED project. SSD also provides a new basket of tailored set-up efficiency indicators that allow the analysis team to correctly assess set-up efficiency and compare the “ as is ” condition with the subsequent “ to be ” condition from an operational perspective. The effectiveness of SSD in addressing set-up losses and predicting time savings is illustrated using an industrial case study of a resin-doming machine. Thanks to its structured step-by-step procedure, SSD significantly improves the efficiency of the changeover process.
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-023-11508-9