The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems

This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2023-07, Vol.33 (11), p.6121-6134
Hauptverfasser: Park, Hae Yeon, Choi, Hyung Tae, Kim, Jung Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6134
container_issue 11
container_start_page 6121
container_title International journal of robust and nonlinear control
container_volume 33
creator Park, Hae Yeon
Choi, Hyung Tae
Kim, Jung Hoon
description This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example.
doi_str_mv 10.1002/rnc.6685
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822871169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822871169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-c27d8631a90c850fdf928697fc63d3d94550ae34c3e75c006ff4bae1e7bef7893</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhoMoWKvgIwyYhZu0c8llZinFGxQFqbvCkMuZmpomcSathFJw4cKl4N6H65M4sW7dnMv_f5wDv-OcEjwgGNOhLtNBGPJgz-kRLIRHKBP73ewLjwvKDp0jY-YYW4_6Ped58gRo-_61_fge1q6L1lMoio1cT_NSNS0a1hvkutu3z1mclwapSqMsN6mGBqzY5AtAVWJAr0DbPYkNZAhWUDadq_PZDLRVTGsaWJhj50DFhYGTv953Hq8uJ6Mbb3x_fTu6GHspDfzA1ijjISOxwCkPsMqUoDwUkUpDlrFM-EGAY2B-yiAKUoxDpfwkBgJRAirigvWds93dWlcvSzCNnFdLXdqXknJKeURI2FHnOyrVlTEalKx1voh1KwmWXZTSRim7KC3q7dDXvID2X04-3I1--R-JyXsq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822871169</pqid></control><display><type>article</type><title>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Hae Yeon ; Choi, Hyung Tae ; Kim, Jung Hoon</creator><creatorcontrib>Park, Hae Yeon ; Choi, Hyung Tae ; Kim, Jung Hoon</creatorcontrib><description>This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6685</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Controllers ; Difference equations ; Discrete time systems ; event‐triggered systems ; Linear matrix inequalities ; linear matrix inequality ; Luenberger observer ; Lyapunov functions ; Mathematical analysis ; Representations ; ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2;∞$$ p=2;\infty $$)</subject><ispartof>International journal of robust and nonlinear control, 2023-07, Vol.33 (11), p.6121-6134</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2545-c27d8631a90c850fdf928697fc63d3d94550ae34c3e75c006ff4bae1e7bef7893</cites><orcidid>0000-0001-5655-9733 ; 0000-0002-5387-2895 ; 0000-0001-8894-8573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6685$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6685$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Park, Hae Yeon</creatorcontrib><creatorcontrib>Choi, Hyung Tae</creatorcontrib><creatorcontrib>Kim, Jung Hoon</creatorcontrib><title>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</title><title>International journal of robust and nonlinear control</title><description>This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example.</description><subject>Controllers</subject><subject>Difference equations</subject><subject>Discrete time systems</subject><subject>event‐triggered systems</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality</subject><subject>Luenberger observer</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2;∞$$ p=2;\infty $$)</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AUhoMoWKvgIwyYhZu0c8llZinFGxQFqbvCkMuZmpomcSathFJw4cKl4N6H65M4sW7dnMv_f5wDv-OcEjwgGNOhLtNBGPJgz-kRLIRHKBP73ewLjwvKDp0jY-YYW4_6Ped58gRo-_61_fge1q6L1lMoio1cT_NSNS0a1hvkutu3z1mclwapSqMsN6mGBqzY5AtAVWJAr0DbPYkNZAhWUDadq_PZDLRVTGsaWJhj50DFhYGTv953Hq8uJ6Mbb3x_fTu6GHspDfzA1ijjISOxwCkPsMqUoDwUkUpDlrFM-EGAY2B-yiAKUoxDpfwkBgJRAirigvWds93dWlcvSzCNnFdLXdqXknJKeURI2FHnOyrVlTEalKx1voh1KwmWXZTSRim7KC3q7dDXvID2X04-3I1--R-JyXsq</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Park, Hae Yeon</creator><creator>Choi, Hyung Tae</creator><creator>Kim, Jung Hoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5655-9733</orcidid><orcidid>https://orcid.org/0000-0002-5387-2895</orcidid><orcidid>https://orcid.org/0000-0001-8894-8573</orcidid></search><sort><creationdate>20230725</creationdate><title>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</title><author>Park, Hae Yeon ; Choi, Hyung Tae ; Kim, Jung Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-c27d8631a90c850fdf928697fc63d3d94550ae34c3e75c006ff4bae1e7bef7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Controllers</topic><topic>Difference equations</topic><topic>Discrete time systems</topic><topic>event‐triggered systems</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality</topic><topic>Luenberger observer</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2;∞$$ p=2;\infty $$)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hae Yeon</creatorcontrib><creatorcontrib>Choi, Hyung Tae</creatorcontrib><creatorcontrib>Kim, Jung Hoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hae Yeon</au><au>Choi, Hyung Tae</au><au>Kim, Jung Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-07-25</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><spage>6121</spage><epage>6134</epage><pages>6121-6134</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6685</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5655-9733</orcidid><orcidid>https://orcid.org/0000-0002-5387-2895</orcidid><orcidid>https://orcid.org/0000-0001-8894-8573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2023-07, Vol.33 (11), p.6121-6134
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2822871169
source Wiley Online Library Journals Frontfile Complete
subjects Controllers
Difference equations
Discrete time systems
event‐triggered systems
Linear matrix inequalities
linear matrix inequality
Luenberger observer
Lyapunov functions
Mathematical analysis
Representations
ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2
∞$$ p=2
\infty $$)
title The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%E2%84%93%E2%88%9E/p$$%20%7B%5Cell%7D_%7B%5Cinfty%20/p%7D%20$$%E2%80%90gains%20for%20discrete%E2%80%90time%20observer%E2%80%90based%20event%E2%80%90triggered%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Park,%20Hae%20Yeon&rft.date=2023-07-25&rft.volume=33&rft.issue=11&rft.spage=6121&rft.epage=6134&rft.pages=6121-6134&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6685&rft_dat=%3Cproquest_cross%3E2822871169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822871169&rft_id=info:pmid/&rfr_iscdi=true