The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems
This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controll...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2023-07, Vol.33 (11), p.6121-6134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6134 |
---|---|
container_issue | 11 |
container_start_page | 6121 |
container_title | International journal of robust and nonlinear control |
container_volume | 33 |
creator | Park, Hae Yeon Choi, Hyung Tae Kim, Jung Hoon |
description | This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example. |
doi_str_mv | 10.1002/rnc.6685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822871169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822871169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2545-c27d8631a90c850fdf928697fc63d3d94550ae34c3e75c006ff4bae1e7bef7893</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhoMoWKvgIwyYhZu0c8llZinFGxQFqbvCkMuZmpomcSathFJw4cKl4N6H65M4sW7dnMv_f5wDv-OcEjwgGNOhLtNBGPJgz-kRLIRHKBP73ewLjwvKDp0jY-YYW4_6Ped58gRo-_61_fge1q6L1lMoio1cT_NSNS0a1hvkutu3z1mclwapSqMsN6mGBqzY5AtAVWJAr0DbPYkNZAhWUDadq_PZDLRVTGsaWJhj50DFhYGTv953Hq8uJ6Mbb3x_fTu6GHspDfzA1ijjISOxwCkPsMqUoDwUkUpDlrFM-EGAY2B-yiAKUoxDpfwkBgJRAirigvWds93dWlcvSzCNnFdLXdqXknJKeURI2FHnOyrVlTEalKx1voh1KwmWXZTSRim7KC3q7dDXvID2X04-3I1--R-JyXsq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822871169</pqid></control><display><type>article</type><title>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Hae Yeon ; Choi, Hyung Tae ; Kim, Jung Hoon</creator><creatorcontrib>Park, Hae Yeon ; Choi, Hyung Tae ; Kim, Jung Hoon</creatorcontrib><description>This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6685</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Controllers ; Difference equations ; Discrete time systems ; event‐triggered systems ; Linear matrix inequalities ; linear matrix inequality ; Luenberger observer ; Lyapunov functions ; Mathematical analysis ; Representations ; ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2;∞$$ p=2;\infty $$)</subject><ispartof>International journal of robust and nonlinear control, 2023-07, Vol.33 (11), p.6121-6134</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2545-c27d8631a90c850fdf928697fc63d3d94550ae34c3e75c006ff4bae1e7bef7893</cites><orcidid>0000-0001-5655-9733 ; 0000-0002-5387-2895 ; 0000-0001-8894-8573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6685$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6685$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Park, Hae Yeon</creatorcontrib><creatorcontrib>Choi, Hyung Tae</creatorcontrib><creatorcontrib>Kim, Jung Hoon</creatorcontrib><title>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</title><title>International journal of robust and nonlinear control</title><description>This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example.</description><subject>Controllers</subject><subject>Difference equations</subject><subject>Discrete time systems</subject><subject>event‐triggered systems</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality</subject><subject>Luenberger observer</subject><subject>Lyapunov functions</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2;∞$$ p=2;\infty $$)</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AUhoMoWKvgIwyYhZu0c8llZinFGxQFqbvCkMuZmpomcSathFJw4cKl4N6H65M4sW7dnMv_f5wDv-OcEjwgGNOhLtNBGPJgz-kRLIRHKBP73ewLjwvKDp0jY-YYW4_6Ped58gRo-_61_fge1q6L1lMoio1cT_NSNS0a1hvkutu3z1mclwapSqMsN6mGBqzY5AtAVWJAr0DbPYkNZAhWUDadq_PZDLRVTGsaWJhj50DFhYGTv953Hq8uJ6Mbb3x_fTu6GHspDfzA1ijjISOxwCkPsMqUoDwUkUpDlrFM-EGAY2B-yiAKUoxDpfwkBgJRAirigvWds93dWlcvSzCNnFdLXdqXknJKeURI2FHnOyrVlTEalKx1voh1KwmWXZTSRim7KC3q7dDXvID2X04-3I1--R-JyXsq</recordid><startdate>20230725</startdate><enddate>20230725</enddate><creator>Park, Hae Yeon</creator><creator>Choi, Hyung Tae</creator><creator>Kim, Jung Hoon</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5655-9733</orcidid><orcidid>https://orcid.org/0000-0002-5387-2895</orcidid><orcidid>https://orcid.org/0000-0001-8894-8573</orcidid></search><sort><creationdate>20230725</creationdate><title>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</title><author>Park, Hae Yeon ; Choi, Hyung Tae ; Kim, Jung Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2545-c27d8631a90c850fdf928697fc63d3d94550ae34c3e75c006ff4bae1e7bef7893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Controllers</topic><topic>Difference equations</topic><topic>Discrete time systems</topic><topic>event‐triggered systems</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality</topic><topic>Luenberger observer</topic><topic>Lyapunov functions</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2;∞$$ p=2;\infty $$)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Hae Yeon</creatorcontrib><creatorcontrib>Choi, Hyung Tae</creatorcontrib><creatorcontrib>Kim, Jung Hoon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Hae Yeon</au><au>Choi, Hyung Tae</au><au>Kim, Jung Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-07-25</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><spage>6121</spage><epage>6134</epage><pages>6121-6134</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This paper aims at computing two types of system gains for discrete‐time observer‐based event‐triggered systems (ETSs) via the linear matrix inequality (LMI) approach. More precisely, an event‐trigger mechanism (ETM) is considered for the discrete‐time control systems consisting of a static controller and a Luenberger observer to determine whether or not the input signal for the controller is updated to the estimated value from the observer. For a tractable treatment of the input/output behavior of such ETMs, we derive their closed‐form representation through a piecewise linear difference equation. Based on this representation, we establish LMI‐based computation approaches to the gains for the ETSs from ℓp$$ {\ell}_p $$ to ℓ∞$$ {\ell}_{\infty } $$ (denoted by ℓ∞/p$$ {\ell}_{\infty /p} $$) with p=2,∞$$ p=2,\infty $$. Finally, the effectiveness of the overall arguments is verified through a numerical example.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6685</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5655-9733</orcidid><orcidid>https://orcid.org/0000-0002-5387-2895</orcidid><orcidid>https://orcid.org/0000-0001-8894-8573</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2023-07, Vol.33 (11), p.6121-6134 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2822871169 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Controllers Difference equations Discrete time systems event‐triggered systems Linear matrix inequalities linear matrix inequality Luenberger observer Lyapunov functions Mathematical analysis Representations ℓ∞/p$$ {\ell}_{\infty /p} $$‐gain (p=2 ∞$$ p=2 \infty $$) |
title | The ℓ∞/p$$ {\ell}_{\infty /p} $$‐gains for discrete‐time observer‐based event‐triggered systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%E2%84%93%E2%88%9E/p$$%20%7B%5Cell%7D_%7B%5Cinfty%20/p%7D%20$$%E2%80%90gains%20for%20discrete%E2%80%90time%20observer%E2%80%90based%20event%E2%80%90triggered%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Park,%20Hae%20Yeon&rft.date=2023-07-25&rft.volume=33&rft.issue=11&rft.spage=6121&rft.epage=6134&rft.pages=6121-6134&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6685&rft_dat=%3Cproquest_cross%3E2822871169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822871169&rft_id=info:pmid/&rfr_iscdi=true |