Optical analysis of thin film cadmium telluride solar cell using nanoparticles for efficiency enhancement

To develop exceptionally effective thin film solar cells with significant cost reduction, light management with plasmonic nanoparticles has become one of the prominent solutions. The present article discusses the role of nanostructures placed as the back reflector through the numerical optical analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2023-08, Vol.55 (8), Article 665
Hauptverfasser: Jain, Sudarshan Kumar, Janyani, Vijay, Gupta, Nikhil Deep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Optical and quantum electronics
container_volume 55
creator Jain, Sudarshan Kumar
Janyani, Vijay
Gupta, Nikhil Deep
description To develop exceptionally effective thin film solar cells with significant cost reduction, light management with plasmonic nanoparticles has become one of the prominent solutions. The present article discusses the role of nanostructures placed as the back reflector through the numerical optical analysis and optimization study of all parameters needed to design cadmium telluride (CdTe) solar cells with only 100 nm active layer thickness. A thorough study of the absorption improvement in a CdTe thin-film solar cell with a spherical array of plasmonic metal nanoparticles is performed. It is found that the photon absorption in the active CdTe layer is considerably improved by the stimulation of localized plasmons in the metallic nanostructures. The study demonstrates that the proposed design based on periodic nanostructures outperforms the reference planar aluminum (Al) back reflector and bare cell structure in terms of optical performance. The proposed structure achieved high absorption when aluminum nanoparticles were used due to better trapping of incident photons than planar reference cell and bare cell structures. The photocurrent density measured under AM-1.5G illumination is 29.26 mA/cm 2 , 24.90 mA/cm 2 , and 10.12 mA/cm 2 for cell with Al nanoparticles, planar Al back reflector, and bare cell, respectively. The results depict that the Al nanoparticles-based cell performed better in absorption and back reflection. Rigorous coupled wave analysis is used to optimize and calculate cell parameters.
doi_str_mv 10.1007/s11082-023-04940-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822781888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822781888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-125b678d30ddc9e5ac7b886f84275ee2c992e5f75424c742be30e661534c38fa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19GXNG3SpYhfMDAbBXchk77MZGjTmrSL-fdWR3Dn6nHhngvvEHLN4ZYDqLvMOWjBQBQMZC2ByROy4KUSTHP1cUoWUEDFdM3rc3KR8x4AKlnCgoT1MAZnW2qjbQ85ZNp7Ou5CpD60HXW26cLU0RHbdkqhQZr71ibq5kynHOKWRhv7waZ5pcVMfZ8oeh9cwOgOFOPORocdxvGSnHnbZrz6vUvy_vT49vDCVuvn14f7FXNCwci4KDeV0k0BTeNqLK1TG60rr6VQJaJwdS2w9KqUQjolxQYLwKriZSFdob0tluTmuDuk_nPCPJp9P6X5u2yEFkJprrWeW-LYcqnPOaE3QwqdTQfDwXwrNUelZlZqfpQaOUPFEcpzOW4x_U3_Q30BfLF6wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822781888</pqid></control><display><type>article</type><title>Optical analysis of thin film cadmium telluride solar cell using nanoparticles for efficiency enhancement</title><source>Springer Nature - Complete Springer Journals</source><creator>Jain, Sudarshan Kumar ; Janyani, Vijay ; Gupta, Nikhil Deep</creator><creatorcontrib>Jain, Sudarshan Kumar ; Janyani, Vijay ; Gupta, Nikhil Deep</creatorcontrib><description>To develop exceptionally effective thin film solar cells with significant cost reduction, light management with plasmonic nanoparticles has become one of the prominent solutions. The present article discusses the role of nanostructures placed as the back reflector through the numerical optical analysis and optimization study of all parameters needed to design cadmium telluride (CdTe) solar cells with only 100 nm active layer thickness. A thorough study of the absorption improvement in a CdTe thin-film solar cell with a spherical array of plasmonic metal nanoparticles is performed. It is found that the photon absorption in the active CdTe layer is considerably improved by the stimulation of localized plasmons in the metallic nanostructures. The study demonstrates that the proposed design based on periodic nanostructures outperforms the reference planar aluminum (Al) back reflector and bare cell structure in terms of optical performance. The proposed structure achieved high absorption when aluminum nanoparticles were used due to better trapping of incident photons than planar reference cell and bare cell structures. The photocurrent density measured under AM-1.5G illumination is 29.26 mA/cm 2 , 24.90 mA/cm 2 , and 10.12 mA/cm 2 for cell with Al nanoparticles, planar Al back reflector, and bare cell, respectively. The results depict that the Al nanoparticles-based cell performed better in absorption and back reflection. Rigorous coupled wave analysis is used to optimize and calculate cell parameters.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-023-04940-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Cadmium telluride ; Cadmium tellurides ; Characterization and Evaluation of Materials ; Computer Communication Networks ; Design parameters ; Electrical Engineering ; Intermetallic compounds ; Lasers ; Nanoparticles ; Nanostructure ; Optical Devices ; Optics ; Optimization ; Photoelectric effect ; Photon absorption ; Photonics ; Photons ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Plasmonics ; Plasmons ; Solar cells ; Thickness ; Thin films ; Wave reflection</subject><ispartof>Optical and quantum electronics, 2023-08, Vol.55 (8), Article 665</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-125b678d30ddc9e5ac7b886f84275ee2c992e5f75424c742be30e661534c38fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-023-04940-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-023-04940-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Jain, Sudarshan Kumar</creatorcontrib><creatorcontrib>Janyani, Vijay</creatorcontrib><creatorcontrib>Gupta, Nikhil Deep</creatorcontrib><title>Optical analysis of thin film cadmium telluride solar cell using nanoparticles for efficiency enhancement</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>To develop exceptionally effective thin film solar cells with significant cost reduction, light management with plasmonic nanoparticles has become one of the prominent solutions. The present article discusses the role of nanostructures placed as the back reflector through the numerical optical analysis and optimization study of all parameters needed to design cadmium telluride (CdTe) solar cells with only 100 nm active layer thickness. A thorough study of the absorption improvement in a CdTe thin-film solar cell with a spherical array of plasmonic metal nanoparticles is performed. It is found that the photon absorption in the active CdTe layer is considerably improved by the stimulation of localized plasmons in the metallic nanostructures. The study demonstrates that the proposed design based on periodic nanostructures outperforms the reference planar aluminum (Al) back reflector and bare cell structure in terms of optical performance. The proposed structure achieved high absorption when aluminum nanoparticles were used due to better trapping of incident photons than planar reference cell and bare cell structures. The photocurrent density measured under AM-1.5G illumination is 29.26 mA/cm 2 , 24.90 mA/cm 2 , and 10.12 mA/cm 2 for cell with Al nanoparticles, planar Al back reflector, and bare cell, respectively. The results depict that the Al nanoparticles-based cell performed better in absorption and back reflection. Rigorous coupled wave analysis is used to optimize and calculate cell parameters.</description><subject>Aluminum</subject><subject>Cadmium telluride</subject><subject>Cadmium tellurides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Design parameters</subject><subject>Electrical Engineering</subject><subject>Intermetallic compounds</subject><subject>Lasers</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Optimization</subject><subject>Photoelectric effect</subject><subject>Photon absorption</subject><subject>Photonics</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Solar cells</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Wave reflection</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcB19GXNG3SpYhfMDAbBXchk77MZGjTmrSL-fdWR3Dn6nHhngvvEHLN4ZYDqLvMOWjBQBQMZC2ByROy4KUSTHP1cUoWUEDFdM3rc3KR8x4AKlnCgoT1MAZnW2qjbQ85ZNp7Ou5CpD60HXW26cLU0RHbdkqhQZr71ibq5kynHOKWRhv7waZ5pcVMfZ8oeh9cwOgOFOPORocdxvGSnHnbZrz6vUvy_vT49vDCVuvn14f7FXNCwci4KDeV0k0BTeNqLK1TG60rr6VQJaJwdS2w9KqUQjolxQYLwKriZSFdob0tluTmuDuk_nPCPJp9P6X5u2yEFkJprrWeW-LYcqnPOaE3QwqdTQfDwXwrNUelZlZqfpQaOUPFEcpzOW4x_U3_Q30BfLF6wQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jain, Sudarshan Kumar</creator><creator>Janyani, Vijay</creator><creator>Gupta, Nikhil Deep</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Optical analysis of thin film cadmium telluride solar cell using nanoparticles for efficiency enhancement</title><author>Jain, Sudarshan Kumar ; Janyani, Vijay ; Gupta, Nikhil Deep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-125b678d30ddc9e5ac7b886f84275ee2c992e5f75424c742be30e661534c38fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Cadmium telluride</topic><topic>Cadmium tellurides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Design parameters</topic><topic>Electrical Engineering</topic><topic>Intermetallic compounds</topic><topic>Lasers</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Optimization</topic><topic>Photoelectric effect</topic><topic>Photon absorption</topic><topic>Photonics</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Solar cells</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Wave reflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Sudarshan Kumar</creatorcontrib><creatorcontrib>Janyani, Vijay</creatorcontrib><creatorcontrib>Gupta, Nikhil Deep</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Sudarshan Kumar</au><au>Janyani, Vijay</au><au>Gupta, Nikhil Deep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical analysis of thin film cadmium telluride solar cell using nanoparticles for efficiency enhancement</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>55</volume><issue>8</issue><artnum>665</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>To develop exceptionally effective thin film solar cells with significant cost reduction, light management with plasmonic nanoparticles has become one of the prominent solutions. The present article discusses the role of nanostructures placed as the back reflector through the numerical optical analysis and optimization study of all parameters needed to design cadmium telluride (CdTe) solar cells with only 100 nm active layer thickness. A thorough study of the absorption improvement in a CdTe thin-film solar cell with a spherical array of plasmonic metal nanoparticles is performed. It is found that the photon absorption in the active CdTe layer is considerably improved by the stimulation of localized plasmons in the metallic nanostructures. The study demonstrates that the proposed design based on periodic nanostructures outperforms the reference planar aluminum (Al) back reflector and bare cell structure in terms of optical performance. The proposed structure achieved high absorption when aluminum nanoparticles were used due to better trapping of incident photons than planar reference cell and bare cell structures. The photocurrent density measured under AM-1.5G illumination is 29.26 mA/cm 2 , 24.90 mA/cm 2 , and 10.12 mA/cm 2 for cell with Al nanoparticles, planar Al back reflector, and bare cell, respectively. The results depict that the Al nanoparticles-based cell performed better in absorption and back reflection. Rigorous coupled wave analysis is used to optimize and calculate cell parameters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-023-04940-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2023-08, Vol.55 (8), Article 665
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2822781888
source Springer Nature - Complete Springer Journals
subjects Aluminum
Cadmium telluride
Cadmium tellurides
Characterization and Evaluation of Materials
Computer Communication Networks
Design parameters
Electrical Engineering
Intermetallic compounds
Lasers
Nanoparticles
Nanostructure
Optical Devices
Optics
Optimization
Photoelectric effect
Photon absorption
Photonics
Photons
Photovoltaic cells
Physics
Physics and Astronomy
Plasmonics
Plasmons
Solar cells
Thickness
Thin films
Wave reflection
title Optical analysis of thin film cadmium telluride solar cell using nanoparticles for efficiency enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20analysis%20of%20thin%20film%20cadmium%20telluride%20solar%20cell%20using%20nanoparticles%20for%20efficiency%20enhancement&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Jain,%20Sudarshan%20Kumar&rft.date=2023-08-01&rft.volume=55&rft.issue=8&rft.artnum=665&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-023-04940-4&rft_dat=%3Cproquest_cross%3E2822781888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822781888&rft_id=info:pmid/&rfr_iscdi=true