On the graph theorem for Lagrangian invariant tori with totally irrational invariant sets

We show that every C 2 Lagrangian invariant torus W of a Tonelli Hamiltonian containing a uniformly continuous curve whose canonical projection has totally irrational homology is a graph, namely, the canonical projection restricted to W is a diffeomorphism. This result extends the graph property obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2023-07, Vol.171 (3-4), p.423-436
Hauptverfasser: Dias Carneiro, Mário J., Ruggiero, Rafael O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that every C 2 Lagrangian invariant torus W of a Tonelli Hamiltonian containing a uniformly continuous curve whose canonical projection has totally irrational homology is a graph, namely, the canonical projection restricted to W is a diffeomorphism. This result extends the graph property obtained by Bangert and Bialy–Polterovich for Lagrangian minimizing tori, invariant by the geodesic flow of a Riemannian metric in the 2-torus, without periodic orbits. Motivated by the famous Hedlund’s examples of Riemannian metrics in the n -torus with n closed, homology independent, minimizing geodesics having minimizing tunnels, we also show that Lagrangian, invariant tori with“large” homology (in the sense of Proposition 4.1) must be graphs. Moreover, we show the C 1 -generic nonexistence of Lagrangian invariant tori with“large”homology.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-022-01391-1