Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles
Previous studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mech...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2017-07, Vol.74 (7), p.2143-2162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2162 |
---|---|
container_issue | 7 |
container_start_page | 2143 |
container_title | Journal of the atmospheric sciences |
container_volume | 74 |
creator | Yamada, Ray Pauluis, Olivier |
description | Previous studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mechanism in moist baroclinic life cycles, which are simulated in an idealized general circulation model with large-scale condensation as the only moist process. The runs are analyzed using a linear diagnostic based on the Kuo–Eliassen equation to decompose the jet change into parts driven by individual forcing terms. It is shown that the wave-induced latent heating drives an indirect Eulerian-mean cell on the equatorward flank of the jet, which acts to reduce the baroclinicity in that region. The eddy sensible heat fluxes act to reduce the baroclinicity near the center of the jet. The moist baroclinic forcing strengthens as the amount of initially available moisture increases.
The effect of the eddy moisture flux on the transformed Eulerian-mean (TEM) and isentropic dynamics is also considered. It is shown that the circulation and EP flux on moist isentropes is around 4 times as strong and extends farther equatorward than on dry isentropes. The equatorward extension of the moist EP flux coincides with the region where the baroclinic forcing is driven by latent heating. The moist EP flux successfully captures the moisture-driven component of the baroclinic forcing that is not seen in the dry EP flux. |
doi_str_mv | 10.1175/JAS-D-16-0329.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822729629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822729629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-2b37ef08814775fa4d48779dce20443e417b8b78576c634794fbabd4bb51856a3</originalsourceid><addsrcrecordid>eNotkLtOwzAARS0EEqUws0ZidutX_BgYSh9QlIoBEKNlu47kKsTFTkHd-Af-kC8hVbnLXY7ulQ4A1xiNMBbl-HHyDGcQc4goUSN8Aga4JAgixtUpGCBECGSKyHNwkfMG9SECD8Dtm_n0v98_K29auGjiV7FsO5-M60JscxHaYhVD7oo7k6JrQhtcUYXaF9O9a3y-BGe1abK_-u8heF3MX6YPsHq6X04nFXRU8A4SS4WvkZSYCVHWhq2ZFEKtnSeIMeoZFlZaIUvBHadMKFZbY9fM2hLLkhs6BDfH3W2KHzufO72Ju9T2l5pIQgRRnKieGh8pl2LOydd6m8K7SXuNkT440r0jPdOY64Mjjekf00ZY3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822729629</pqid></control><display><type>article</type><title>Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><source>AMS Journals (Meteorology)</source><creator>Yamada, Ray ; Pauluis, Olivier</creator><creatorcontrib>Yamada, Ray ; Pauluis, Olivier</creatorcontrib><description>Previous studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mechanism in moist baroclinic life cycles, which are simulated in an idealized general circulation model with large-scale condensation as the only moist process. The runs are analyzed using a linear diagnostic based on the Kuo–Eliassen equation to decompose the jet change into parts driven by individual forcing terms. It is shown that the wave-induced latent heating drives an indirect Eulerian-mean cell on the equatorward flank of the jet, which acts to reduce the baroclinicity in that region. The eddy sensible heat fluxes act to reduce the baroclinicity near the center of the jet. The moist baroclinic forcing strengthens as the amount of initially available moisture increases.
The effect of the eddy moisture flux on the transformed Eulerian-mean (TEM) and isentropic dynamics is also considered. It is shown that the circulation and EP flux on moist isentropes is around 4 times as strong and extends farther equatorward than on dry isentropes. The equatorward extension of the moist EP flux coincides with the region where the baroclinic forcing is driven by latent heating. The moist EP flux successfully captures the moisture-driven component of the baroclinic forcing that is not seen in the dry EP flux.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-16-0329.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Baroclinic flow ; Baroclinic mode ; Baroclinity ; Climate ; Cycles ; Enthalpy ; Fluctuations ; Form drag ; General circulation models ; Heat ; Heat flux ; Heat transfer ; Heating ; Life cycles ; Moisture ; Moisture effects ; Moisture flux ; Momentum ; Precipitation ; Sensible heat ; Simulation</subject><ispartof>Journal of the atmospheric sciences, 2017-07, Vol.74 (7), p.2143-2162</ispartof><rights>Copyright American Meteorological Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-2b37ef08814775fa4d48779dce20443e417b8b78576c634794fbabd4bb51856a3</citedby><cites>FETCH-LOGICAL-c376t-2b37ef08814775fa4d48779dce20443e417b8b78576c634794fbabd4bb51856a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Yamada, Ray</creatorcontrib><creatorcontrib>Pauluis, Olivier</creatorcontrib><title>Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles</title><title>Journal of the atmospheric sciences</title><description>Previous studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mechanism in moist baroclinic life cycles, which are simulated in an idealized general circulation model with large-scale condensation as the only moist process. The runs are analyzed using a linear diagnostic based on the Kuo–Eliassen equation to decompose the jet change into parts driven by individual forcing terms. It is shown that the wave-induced latent heating drives an indirect Eulerian-mean cell on the equatorward flank of the jet, which acts to reduce the baroclinicity in that region. The eddy sensible heat fluxes act to reduce the baroclinicity near the center of the jet. The moist baroclinic forcing strengthens as the amount of initially available moisture increases.
The effect of the eddy moisture flux on the transformed Eulerian-mean (TEM) and isentropic dynamics is also considered. It is shown that the circulation and EP flux on moist isentropes is around 4 times as strong and extends farther equatorward than on dry isentropes. The equatorward extension of the moist EP flux coincides with the region where the baroclinic forcing is driven by latent heating. The moist EP flux successfully captures the moisture-driven component of the baroclinic forcing that is not seen in the dry EP flux.</description><subject>Baroclinic flow</subject><subject>Baroclinic mode</subject><subject>Baroclinity</subject><subject>Climate</subject><subject>Cycles</subject><subject>Enthalpy</subject><subject>Fluctuations</subject><subject>Form drag</subject><subject>General circulation models</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Life cycles</subject><subject>Moisture</subject><subject>Moisture effects</subject><subject>Moisture flux</subject><subject>Momentum</subject><subject>Precipitation</subject><subject>Sensible heat</subject><subject>Simulation</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkLtOwzAARS0EEqUws0ZidutX_BgYSh9QlIoBEKNlu47kKsTFTkHd-Af-kC8hVbnLXY7ulQ4A1xiNMBbl-HHyDGcQc4goUSN8Aga4JAgixtUpGCBECGSKyHNwkfMG9SECD8Dtm_n0v98_K29auGjiV7FsO5-M60JscxHaYhVD7oo7k6JrQhtcUYXaF9O9a3y-BGe1abK_-u8heF3MX6YPsHq6X04nFXRU8A4SS4WvkZSYCVHWhq2ZFEKtnSeIMeoZFlZaIUvBHadMKFZbY9fM2hLLkhs6BDfH3W2KHzufO72Ju9T2l5pIQgRRnKieGh8pl2LOydd6m8K7SXuNkT440r0jPdOY64Mjjekf00ZY3A</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Yamada, Ray</creator><creator>Pauluis, Olivier</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20170701</creationdate><title>Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles</title><author>Yamada, Ray ; Pauluis, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-2b37ef08814775fa4d48779dce20443e417b8b78576c634794fbabd4bb51856a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Baroclinic flow</topic><topic>Baroclinic mode</topic><topic>Baroclinity</topic><topic>Climate</topic><topic>Cycles</topic><topic>Enthalpy</topic><topic>Fluctuations</topic><topic>Form drag</topic><topic>General circulation models</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Life cycles</topic><topic>Moisture</topic><topic>Moisture effects</topic><topic>Moisture flux</topic><topic>Momentum</topic><topic>Precipitation</topic><topic>Sensible heat</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Ray</creatorcontrib><creatorcontrib>Pauluis, Olivier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamada, Ray</au><au>Pauluis, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>74</volume><issue>7</issue><spage>2143</spage><epage>2162</epage><pages>2143-2162</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Previous studies show that the moist Eliassen–Palm (EP) flux captures a greater eddy momentum exchange through form drag than the dry EP flux in the midlatitude climate. This suggests that the eddy moisture flux acts to decrease the baroclinicity of the zonal jet. This study investigates such a mechanism in moist baroclinic life cycles, which are simulated in an idealized general circulation model with large-scale condensation as the only moist process. The runs are analyzed using a linear diagnostic based on the Kuo–Eliassen equation to decompose the jet change into parts driven by individual forcing terms. It is shown that the wave-induced latent heating drives an indirect Eulerian-mean cell on the equatorward flank of the jet, which acts to reduce the baroclinicity in that region. The eddy sensible heat fluxes act to reduce the baroclinicity near the center of the jet. The moist baroclinic forcing strengthens as the amount of initially available moisture increases.
The effect of the eddy moisture flux on the transformed Eulerian-mean (TEM) and isentropic dynamics is also considered. It is shown that the circulation and EP flux on moist isentropes is around 4 times as strong and extends farther equatorward than on dry isentropes. The equatorward extension of the moist EP flux coincides with the region where the baroclinic forcing is driven by latent heating. The moist EP flux successfully captures the moisture-driven component of the baroclinic forcing that is not seen in the dry EP flux.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-16-0329.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2017-07, Vol.74 (7), p.2143-2162 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2822729629 |
source | Alma/SFX Local Collection; EZB Electronic Journals Library; AMS Journals (Meteorology) |
subjects | Baroclinic flow Baroclinic mode Baroclinity Climate Cycles Enthalpy Fluctuations Form drag General circulation models Heat Heat flux Heat transfer Heating Life cycles Moisture Moisture effects Moisture flux Momentum Precipitation Sensible heat Simulation |
title | Wave–Mean-Flow Interactions in Moist Baroclinic Life Cycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A47%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%E2%80%93Mean-Flow%20Interactions%20in%20Moist%20Baroclinic%20Life%20Cycles&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Yamada,%20Ray&rft.date=2017-07-01&rft.volume=74&rft.issue=7&rft.spage=2143&rft.epage=2162&rft.pages=2143-2162&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-16-0329.1&rft_dat=%3Cproquest_cross%3E2822729629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822729629&rft_id=info:pmid/&rfr_iscdi=true |