Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths

In most implementations of iterative learning control (ILC) for trajectory tracking, it is usually required that the trial lengths of different iterations are uniform. However, this requirement may not always be ensured in practical applications. In this paper, a feedback-aided PD-type ILC design fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2023-07, Vol.45 (11), p.2015-2026
Hauptverfasser: Guan, Shanglei, Zhuang, Zhihe, Tao, Hongfeng, Chen, Yiyang, Stojanovic, Vladimir, Paszke, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2026
container_issue 11
container_start_page 2015
container_title Transactions of the Institute of Measurement and Control
container_volume 45
creator Guan, Shanglei
Zhuang, Zhihe
Tao, Hongfeng
Chen, Yiyang
Stojanovic, Vladimir
Paszke, Wojciech
description In most implementations of iterative learning control (ILC) for trajectory tracking, it is usually required that the trial lengths of different iterations are uniform. However, this requirement may not always be ensured in practical applications. In this paper, a feedback-aided PD-type ILC design for time-varying systems with non-uniform trial lengths is proposed. Although the actual trial lengths are non-uniform, the designed update sequences provide uniform full-length signals for the update process. Meanwhile, information from the most recent valid iterations can be better used than the mechanisms that compensate with hypothesized data, such as zero. Their recursive generation also reduces the storage burden compared to search strategies. The feedback error signal can be additionally used as part of the correction term to improve the system performance compared to the traditional open-loop approaches. Under a deterministic model, the main convergence results are obtained by combining the λ -norm technique with the inductive analysis approach. At last, a linear numerical simulation and a nonlinear single-joint robot simulation are performed, respectively, to show that the proposed design can achieve the asymptotic tracking of the desired trajectories for time-varying systems with non-uniform trial lengths.
doi_str_mv 10.1177/01423312221142564
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822650226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312221142564</sage_id><sourcerecordid>2822650226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e25b71c502396a7e75b21dfd48240b1daf8b0fcde8715ca17a92a7b6c8f8adbf3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAc2qSzW62R6lWhYIe9Lxkk0mbus3WJK3035ulggfxNAPzvTczD6FrRieMSXlLmeBFwTjnLHdlJU7QiAkpCS2q6SkaDXMyAOfoIsY1pVSISoyQmwOYVukPopwBg1_vSTpsAbsEQSW3B9yBCt75Jda9T6HvsO0DTm4DZK_CYRjEQ0ywifjLpRX2vSc77zK0wSk41WUDv0yreInOrOoiXP3UMXqfP7zNnsji5fF5drcgOl-XCPCylUyXlBfTSkmQZcuZsUbUXNCWGWXrllptoJas1IpJNeVKtpWuba1Ma4sxujn6bkP_uYOYmnW_Cz6vbHjNeZWdeZUpdqR06GMMYJttcJv8UMNoMyTa_Ek0ayZHTVRL-HX9X_ANyI93WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822650226</pqid></control><display><type>article</type><title>Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths</title><source>Access via SAGE</source><creator>Guan, Shanglei ; Zhuang, Zhihe ; Tao, Hongfeng ; Chen, Yiyang ; Stojanovic, Vladimir ; Paszke, Wojciech</creator><creatorcontrib>Guan, Shanglei ; Zhuang, Zhihe ; Tao, Hongfeng ; Chen, Yiyang ; Stojanovic, Vladimir ; Paszke, Wojciech</creatorcontrib><description>In most implementations of iterative learning control (ILC) for trajectory tracking, it is usually required that the trial lengths of different iterations are uniform. However, this requirement may not always be ensured in practical applications. In this paper, a feedback-aided PD-type ILC design for time-varying systems with non-uniform trial lengths is proposed. Although the actual trial lengths are non-uniform, the designed update sequences provide uniform full-length signals for the update process. Meanwhile, information from the most recent valid iterations can be better used than the mechanisms that compensate with hypothesized data, such as zero. Their recursive generation also reduces the storage burden compared to search strategies. The feedback error signal can be additionally used as part of the correction term to improve the system performance compared to the traditional open-loop approaches. Under a deterministic model, the main convergence results are obtained by combining the λ -norm technique with the inductive analysis approach. At last, a linear numerical simulation and a nonlinear single-joint robot simulation are performed, respectively, to show that the proposed design can achieve the asymptotic tracking of the desired trajectories for time-varying systems with non-uniform trial lengths.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312221142564</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Error correction ; Error signals ; Feedback ; Iterative methods ; Learning ; Mathematical models ; Time varying control systems ; Tracking control ; Trajectory control</subject><ispartof>Transactions of the Institute of Measurement and Control, 2023-07, Vol.45 (11), p.2015-2026</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-e25b71c502396a7e75b21dfd48240b1daf8b0fcde8715ca17a92a7b6c8f8adbf3</citedby><cites>FETCH-LOGICAL-c312t-e25b71c502396a7e75b21dfd48240b1daf8b0fcde8715ca17a92a7b6c8f8adbf3</cites><orcidid>0000-0001-9960-9040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312221142564$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312221142564$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Guan, Shanglei</creatorcontrib><creatorcontrib>Zhuang, Zhihe</creatorcontrib><creatorcontrib>Tao, Hongfeng</creatorcontrib><creatorcontrib>Chen, Yiyang</creatorcontrib><creatorcontrib>Stojanovic, Vladimir</creatorcontrib><creatorcontrib>Paszke, Wojciech</creatorcontrib><title>Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths</title><title>Transactions of the Institute of Measurement and Control</title><description>In most implementations of iterative learning control (ILC) for trajectory tracking, it is usually required that the trial lengths of different iterations are uniform. However, this requirement may not always be ensured in practical applications. In this paper, a feedback-aided PD-type ILC design for time-varying systems with non-uniform trial lengths is proposed. Although the actual trial lengths are non-uniform, the designed update sequences provide uniform full-length signals for the update process. Meanwhile, information from the most recent valid iterations can be better used than the mechanisms that compensate with hypothesized data, such as zero. Their recursive generation also reduces the storage burden compared to search strategies. The feedback error signal can be additionally used as part of the correction term to improve the system performance compared to the traditional open-loop approaches. Under a deterministic model, the main convergence results are obtained by combining the λ -norm technique with the inductive analysis approach. At last, a linear numerical simulation and a nonlinear single-joint robot simulation are performed, respectively, to show that the proposed design can achieve the asymptotic tracking of the desired trajectories for time-varying systems with non-uniform trial lengths.</description><subject>Error correction</subject><subject>Error signals</subject><subject>Feedback</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Time varying control systems</subject><subject>Tracking control</subject><subject>Trajectory control</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvAc2qSzW62R6lWhYIe9Lxkk0mbus3WJK3035ulggfxNAPzvTczD6FrRieMSXlLmeBFwTjnLHdlJU7QiAkpCS2q6SkaDXMyAOfoIsY1pVSISoyQmwOYVukPopwBg1_vSTpsAbsEQSW3B9yBCt75Jda9T6HvsO0DTm4DZK_CYRjEQ0ywifjLpRX2vSc77zK0wSk41WUDv0yreInOrOoiXP3UMXqfP7zNnsji5fF5drcgOl-XCPCylUyXlBfTSkmQZcuZsUbUXNCWGWXrllptoJas1IpJNeVKtpWuba1Ma4sxujn6bkP_uYOYmnW_Cz6vbHjNeZWdeZUpdqR06GMMYJttcJv8UMNoMyTa_Ek0ayZHTVRL-HX9X_ANyI93WA</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Guan, Shanglei</creator><creator>Zhuang, Zhihe</creator><creator>Tao, Hongfeng</creator><creator>Chen, Yiyang</creator><creator>Stojanovic, Vladimir</creator><creator>Paszke, Wojciech</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9960-9040</orcidid></search><sort><creationdate>202307</creationdate><title>Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths</title><author>Guan, Shanglei ; Zhuang, Zhihe ; Tao, Hongfeng ; Chen, Yiyang ; Stojanovic, Vladimir ; Paszke, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e25b71c502396a7e75b21dfd48240b1daf8b0fcde8715ca17a92a7b6c8f8adbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Error correction</topic><topic>Error signals</topic><topic>Feedback</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Time varying control systems</topic><topic>Tracking control</topic><topic>Trajectory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Shanglei</creatorcontrib><creatorcontrib>Zhuang, Zhihe</creatorcontrib><creatorcontrib>Tao, Hongfeng</creatorcontrib><creatorcontrib>Chen, Yiyang</creatorcontrib><creatorcontrib>Stojanovic, Vladimir</creatorcontrib><creatorcontrib>Paszke, Wojciech</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Shanglei</au><au>Zhuang, Zhihe</au><au>Tao, Hongfeng</au><au>Chen, Yiyang</au><au>Stojanovic, Vladimir</au><au>Paszke, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2023-07</date><risdate>2023</risdate><volume>45</volume><issue>11</issue><spage>2015</spage><epage>2026</epage><pages>2015-2026</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>In most implementations of iterative learning control (ILC) for trajectory tracking, it is usually required that the trial lengths of different iterations are uniform. However, this requirement may not always be ensured in practical applications. In this paper, a feedback-aided PD-type ILC design for time-varying systems with non-uniform trial lengths is proposed. Although the actual trial lengths are non-uniform, the designed update sequences provide uniform full-length signals for the update process. Meanwhile, information from the most recent valid iterations can be better used than the mechanisms that compensate with hypothesized data, such as zero. Their recursive generation also reduces the storage burden compared to search strategies. The feedback error signal can be additionally used as part of the correction term to improve the system performance compared to the traditional open-loop approaches. Under a deterministic model, the main convergence results are obtained by combining the λ -norm technique with the inductive analysis approach. At last, a linear numerical simulation and a nonlinear single-joint robot simulation are performed, respectively, to show that the proposed design can achieve the asymptotic tracking of the desired trajectories for time-varying systems with non-uniform trial lengths.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312221142564</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9960-9040</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2023-07, Vol.45 (11), p.2015-2026
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2822650226
source Access via SAGE
subjects Error correction
Error signals
Feedback
Iterative methods
Learning
Mathematical models
Time varying control systems
Tracking control
Trajectory control
title Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback-aided%20PD-type%20iterative%20learning%20control%20for%20time-varying%20systems%20with%20non-uniform%20trial%20lengths&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Guan,%20Shanglei&rft.date=2023-07&rft.volume=45&rft.issue=11&rft.spage=2015&rft.epage=2026&rft.pages=2015-2026&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312221142564&rft_dat=%3Cproquest_cross%3E2822650226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822650226&rft_id=info:pmid/&rft_sage_id=10.1177_01423312221142564&rfr_iscdi=true