Progress and prospects of dealloying methods for energy-conversion electrocatalysis

Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2023-06, Vol.52 (22), p.737-7382
Hauptverfasser: Chen, Yuanda, Tan, Zehao, Wang, Enping, Yin, Jiewei, Luo, Liuxuan, Shen, Shuiyun, Zhang, Junliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7382
container_issue 22
container_start_page 737
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 52
creator Chen, Yuanda
Tan, Zehao
Wang, Enping
Yin, Jiewei
Luo, Liuxuan
Shen, Shuiyun
Zhang, Junliang
description Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed. Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy.
doi_str_mv 10.1039/d3dt00449j
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2822630816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822630816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</originalsourceid><addsrcrecordid>eNpdkUtLw0AQgBdRrFYv3pUFLyJE95VscpTWJwUF6zlsdic1JcnW3UTIv3e1tYKHYQbmm2H4BqETSq4o4dm14aYjRIhsuYMOqJAyyhgXu9uaJSN06P2SEMZIzPbRiEvKspjzA_T64uzCgfdYtQavnPUr0J3HtsQGVF3boWoXuIHu3RqPS-swtOAWQ6Rt-wnOV7bFUIcRZ7XqVD34yh-hvVLVHo43eYze7m7nk4do9nz_OLmZRZpz2UUQp4kqWZyoWDAthWSJIkwzIY1RqoiBU82Ap2kaApSgUjAOBZcyBUYLxsfoYr03nP3Rg-_ypvIa6lq1YHufs5SkcUYymgX0_B-6tL1rw3WBCoI4SWkSqMs1pYMH76DMV65qlBtySvJv1fmUT-c_qp8CfLZZ2RcNmC366zYAp2vAeb3t_v2KfwGLK4L_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822630816</pqid></control><display><type>article</type><title>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Yuanda ; Tan, Zehao ; Wang, Enping ; Yin, Jiewei ; Luo, Liuxuan ; Shen, Shuiyun ; Zhang, Junliang</creator><creatorcontrib>Chen, Yuanda ; Tan, Zehao ; Wang, Enping ; Yin, Jiewei ; Luo, Liuxuan ; Shen, Shuiyun ; Zhang, Junliang</creatorcontrib><description>Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed. Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt00449j</identifier><identifier>PMID: 37129533</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Controllability ; Corrosion prevention ; Dealloying ; Electrocatalysis ; Electrocatalysts ; Electrolysis ; Energy conversion efficiency ; Fuel cells ; Hydrogen production ; Porous materials</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2023-06, Vol.52 (22), p.737-7382</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</citedby><cites>FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</cites><orcidid>0000-0003-2370-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37129533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yuanda</creatorcontrib><creatorcontrib>Tan, Zehao</creatorcontrib><creatorcontrib>Wang, Enping</creatorcontrib><creatorcontrib>Yin, Jiewei</creatorcontrib><creatorcontrib>Luo, Liuxuan</creatorcontrib><creatorcontrib>Shen, Shuiyun</creatorcontrib><creatorcontrib>Zhang, Junliang</creatorcontrib><title>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed. Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy.</description><subject>Controllability</subject><subject>Corrosion prevention</subject><subject>Dealloying</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Energy conversion efficiency</subject><subject>Fuel cells</subject><subject>Hydrogen production</subject><subject>Porous materials</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLw0AQgBdRrFYv3pUFLyJE95VscpTWJwUF6zlsdic1JcnW3UTIv3e1tYKHYQbmm2H4BqETSq4o4dm14aYjRIhsuYMOqJAyyhgXu9uaJSN06P2SEMZIzPbRiEvKspjzA_T64uzCgfdYtQavnPUr0J3HtsQGVF3boWoXuIHu3RqPS-swtOAWQ6Rt-wnOV7bFUIcRZ7XqVD34yh-hvVLVHo43eYze7m7nk4do9nz_OLmZRZpz2UUQp4kqWZyoWDAthWSJIkwzIY1RqoiBU82Ap2kaApSgUjAOBZcyBUYLxsfoYr03nP3Rg-_ypvIa6lq1YHufs5SkcUYymgX0_B-6tL1rw3WBCoI4SWkSqMs1pYMH76DMV65qlBtySvJv1fmUT-c_qp8CfLZZ2RcNmC366zYAp2vAeb3t_v2KfwGLK4L_</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Chen, Yuanda</creator><creator>Tan, Zehao</creator><creator>Wang, Enping</creator><creator>Yin, Jiewei</creator><creator>Luo, Liuxuan</creator><creator>Shen, Shuiyun</creator><creator>Zhang, Junliang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2370-9699</orcidid></search><sort><creationdate>20230606</creationdate><title>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</title><author>Chen, Yuanda ; Tan, Zehao ; Wang, Enping ; Yin, Jiewei ; Luo, Liuxuan ; Shen, Shuiyun ; Zhang, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Controllability</topic><topic>Corrosion prevention</topic><topic>Dealloying</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Energy conversion efficiency</topic><topic>Fuel cells</topic><topic>Hydrogen production</topic><topic>Porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuanda</creatorcontrib><creatorcontrib>Tan, Zehao</creatorcontrib><creatorcontrib>Wang, Enping</creatorcontrib><creatorcontrib>Yin, Jiewei</creatorcontrib><creatorcontrib>Luo, Liuxuan</creatorcontrib><creatorcontrib>Shen, Shuiyun</creatorcontrib><creatorcontrib>Zhang, Junliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuanda</au><au>Tan, Zehao</au><au>Wang, Enping</au><au>Yin, Jiewei</au><au>Luo, Liuxuan</au><au>Shen, Shuiyun</au><au>Zhang, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2023-06-06</date><risdate>2023</risdate><volume>52</volume><issue>22</issue><spage>737</spage><epage>7382</epage><pages>737-7382</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed. Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37129533</pmid><doi>10.1039/d3dt00449j</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2370-9699</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2023-06, Vol.52 (22), p.737-7382
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_journals_2822630816
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Controllability
Corrosion prevention
Dealloying
Electrocatalysis
Electrocatalysts
Electrolysis
Energy conversion efficiency
Fuel cells
Hydrogen production
Porous materials
title Progress and prospects of dealloying methods for energy-conversion electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20and%20prospects%20of%20dealloying%20methods%20for%20energy-conversion%20electrocatalysis&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Chen,%20Yuanda&rft.date=2023-06-06&rft.volume=52&rft.issue=22&rft.spage=737&rft.epage=7382&rft.pages=737-7382&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt00449j&rft_dat=%3Cproquest_pubme%3E2822630816%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822630816&rft_id=info:pmid/37129533&rfr_iscdi=true