Progress and prospects of dealloying methods for energy-conversion electrocatalysis
Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies f...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2023-06, Vol.52 (22), p.737-7382 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7382 |
---|---|
container_issue | 22 |
container_start_page | 737 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 52 |
creator | Chen, Yuanda Tan, Zehao Wang, Enping Yin, Jiewei Luo, Liuxuan Shen, Shuiyun Zhang, Junliang |
description | Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed.
Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. |
doi_str_mv | 10.1039/d3dt00449j |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2822630816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822630816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</originalsourceid><addsrcrecordid>eNpdkUtLw0AQgBdRrFYv3pUFLyJE95VscpTWJwUF6zlsdic1JcnW3UTIv3e1tYKHYQbmm2H4BqETSq4o4dm14aYjRIhsuYMOqJAyyhgXu9uaJSN06P2SEMZIzPbRiEvKspjzA_T64uzCgfdYtQavnPUr0J3HtsQGVF3boWoXuIHu3RqPS-swtOAWQ6Rt-wnOV7bFUIcRZ7XqVD34yh-hvVLVHo43eYze7m7nk4do9nz_OLmZRZpz2UUQp4kqWZyoWDAthWSJIkwzIY1RqoiBU82Ap2kaApSgUjAOBZcyBUYLxsfoYr03nP3Rg-_ypvIa6lq1YHufs5SkcUYymgX0_B-6tL1rw3WBCoI4SWkSqMs1pYMH76DMV65qlBtySvJv1fmUT-c_qp8CfLZZ2RcNmC366zYAp2vAeb3t_v2KfwGLK4L_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822630816</pqid></control><display><type>article</type><title>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Chen, Yuanda ; Tan, Zehao ; Wang, Enping ; Yin, Jiewei ; Luo, Liuxuan ; Shen, Shuiyun ; Zhang, Junliang</creator><creatorcontrib>Chen, Yuanda ; Tan, Zehao ; Wang, Enping ; Yin, Jiewei ; Luo, Liuxuan ; Shen, Shuiyun ; Zhang, Junliang</creatorcontrib><description>Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed.
Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d3dt00449j</identifier><identifier>PMID: 37129533</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Controllability ; Corrosion prevention ; Dealloying ; Electrocatalysis ; Electrocatalysts ; Electrolysis ; Energy conversion efficiency ; Fuel cells ; Hydrogen production ; Porous materials</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2023-06, Vol.52 (22), p.737-7382</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</citedby><cites>FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</cites><orcidid>0000-0003-2370-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37129533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yuanda</creatorcontrib><creatorcontrib>Tan, Zehao</creatorcontrib><creatorcontrib>Wang, Enping</creatorcontrib><creatorcontrib>Yin, Jiewei</creatorcontrib><creatorcontrib>Luo, Liuxuan</creatorcontrib><creatorcontrib>Shen, Shuiyun</creatorcontrib><creatorcontrib>Zhang, Junliang</creatorcontrib><title>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed.
Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy.</description><subject>Controllability</subject><subject>Corrosion prevention</subject><subject>Dealloying</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Energy conversion efficiency</subject><subject>Fuel cells</subject><subject>Hydrogen production</subject><subject>Porous materials</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLw0AQgBdRrFYv3pUFLyJE95VscpTWJwUF6zlsdic1JcnW3UTIv3e1tYKHYQbmm2H4BqETSq4o4dm14aYjRIhsuYMOqJAyyhgXu9uaJSN06P2SEMZIzPbRiEvKspjzA_T64uzCgfdYtQavnPUr0J3HtsQGVF3boWoXuIHu3RqPS-swtOAWQ6Rt-wnOV7bFUIcRZ7XqVD34yh-hvVLVHo43eYze7m7nk4do9nz_OLmZRZpz2UUQp4kqWZyoWDAthWSJIkwzIY1RqoiBU82Ap2kaApSgUjAOBZcyBUYLxsfoYr03nP3Rg-_ypvIa6lq1YHufs5SkcUYymgX0_B-6tL1rw3WBCoI4SWkSqMs1pYMH76DMV65qlBtySvJv1fmUT-c_qp8CfLZZ2RcNmC366zYAp2vAeb3t_v2KfwGLK4L_</recordid><startdate>20230606</startdate><enddate>20230606</enddate><creator>Chen, Yuanda</creator><creator>Tan, Zehao</creator><creator>Wang, Enping</creator><creator>Yin, Jiewei</creator><creator>Luo, Liuxuan</creator><creator>Shen, Shuiyun</creator><creator>Zhang, Junliang</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2370-9699</orcidid></search><sort><creationdate>20230606</creationdate><title>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</title><author>Chen, Yuanda ; Tan, Zehao ; Wang, Enping ; Yin, Jiewei ; Luo, Liuxuan ; Shen, Shuiyun ; Zhang, Junliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e586af256a542c74726a02c247ddaab5e31c2e3888388ea417423eb3778e21b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Controllability</topic><topic>Corrosion prevention</topic><topic>Dealloying</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Energy conversion efficiency</topic><topic>Fuel cells</topic><topic>Hydrogen production</topic><topic>Porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yuanda</creatorcontrib><creatorcontrib>Tan, Zehao</creatorcontrib><creatorcontrib>Wang, Enping</creatorcontrib><creatorcontrib>Yin, Jiewei</creatorcontrib><creatorcontrib>Luo, Liuxuan</creatorcontrib><creatorcontrib>Shen, Shuiyun</creatorcontrib><creatorcontrib>Zhang, Junliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yuanda</au><au>Tan, Zehao</au><au>Wang, Enping</au><au>Yin, Jiewei</au><au>Luo, Liuxuan</au><au>Shen, Shuiyun</au><au>Zhang, Junliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress and prospects of dealloying methods for energy-conversion electrocatalysis</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2023-06-06</date><risdate>2023</risdate><volume>52</volume><issue>22</issue><spage>737</spage><epage>7382</epage><pages>737-7382</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy. For both water electrolysis and fuel cell electrode reactions, electrocatalysts are critical to their energy conversion efficiencies. Among the various strategies for improving the performance of electrocatalysts, dealloying has been developed as a commonly used effective post-processing method. It originated from anti-corrosion science and can form metal materials with porous or "skin" nanostructures by selectively dissolving the active components in alloys. There are generally two types of dealloying methods: electrochemical dealloying and chemical dealloying. Electrochemical dealloying is more controllable, while chemical dealloying is simpler and less expensive. In this review, the fundamentals, histories, and progress of dealloying methods for energy conversion electrocatalysis are systematically summarized. Furthermore, current problems and prospects are proposed.
Developing hydrogen production and utilization technologies is a promising way to achieve large-scale applications of renewable energy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37129533</pmid><doi>10.1039/d3dt00449j</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2370-9699</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2023-06, Vol.52 (22), p.737-7382 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_journals_2822630816 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Controllability Corrosion prevention Dealloying Electrocatalysis Electrocatalysts Electrolysis Energy conversion efficiency Fuel cells Hydrogen production Porous materials |
title | Progress and prospects of dealloying methods for energy-conversion electrocatalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20and%20prospects%20of%20dealloying%20methods%20for%20energy-conversion%20electrocatalysis&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Chen,%20Yuanda&rft.date=2023-06-06&rft.volume=52&rft.issue=22&rft.spage=737&rft.epage=7382&rft.pages=737-7382&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d3dt00449j&rft_dat=%3Cproquest_pubme%3E2822630816%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822630816&rft_id=info:pmid/37129533&rfr_iscdi=true |