Animation generation for object transportation with a rope using deep reinforcement learning

This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. The challenge is that the agents need to master several skills, including approaching the block, using the rope to wrap around it, and then moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer animation and virtual worlds 2023-05, Vol.34 (3-4), p.n/a
Hauptverfasser: Wong, Sai‐Keung, Wei, Xu‐Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3-4
container_start_page
container_title Computer animation and virtual worlds
container_volume 34
creator Wong, Sai‐Keung
Wei, Xu‐Tao
description This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. The challenge is that the agents need to master several skills, including approaching the block, using the rope to wrap around it, and then moving the block to a predefined goal position. We propose several reward terms to learn the transportation policy and the adjustment policy that govern the skills of the agents. Experiment results showed that the proposed approach was able to generate various animations in different settings, including rope lengths, block sizes, and block shapes. An ablation test revealed the effects of the reward terms. We also investigated factors that affected the performance of the two policies. This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. An ablation test revealed the effects of the proposed reward terms.
doi_str_mv 10.1002/cav.2168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822563205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822563205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2938-4439dce6777c1b48542805c0fe6f25ab688af5158f6ae6b8da748ecec837cea93</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1yW6y6bEU_0HBi4oHIWSzk7qlTdYktfTbm7rizdM8eL-Z4T2ELimZUELYjdFfE0aFPEIjyitRVKx-O_7Tgp6isxhXmRSMkhF6n7luo1PnHV6CgzBI6wP2zQpMwiloF3sf0uDsuvSBNQ6-B7yNnVviFqDHATqXlwxswCW8Bh1c9s7RidXrCBe_c4xe7m6f5w_F4un-cT5bFIZNS1lUVTltDYi6rg1tKskrJgk3xIKwjOtGSKktp1xaoUE0stV1JcGAkWVtQE_LMboa7vbBf24hJrXy2-DyS8UkY1yUjPBMXQ-UCT7GAFb1IWcPe0WJOnSncnfq0F1GiwHddWvY_8up-ez1h_8GHQVxYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822563205</pqid></control><display><type>article</type><title>Animation generation for object transportation with a rope using deep reinforcement learning</title><source>Wiley Journals</source><creator>Wong, Sai‐Keung ; Wei, Xu‐Tao</creator><creatorcontrib>Wong, Sai‐Keung ; Wei, Xu‐Tao</creatorcontrib><description>This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. The challenge is that the agents need to master several skills, including approaching the block, using the rope to wrap around it, and then moving the block to a predefined goal position. We propose several reward terms to learn the transportation policy and the adjustment policy that govern the skills of the agents. Experiment results showed that the proposed approach was able to generate various animations in different settings, including rope lengths, block sizes, and block shapes. An ablation test revealed the effects of the reward terms. We also investigated factors that affected the performance of the two policies. This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. An ablation test revealed the effects of the proposed reward terms.</description><identifier>ISSN: 1546-4261</identifier><identifier>EISSN: 1546-427X</identifier><identifier>DOI: 10.1002/cav.2168</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Animation ; collaboration ; Deep learning ; object transportation ; reinforcement learning ; Skills ; Transportation</subject><ispartof>Computer animation and virtual worlds, 2023-05, Vol.34 (3-4), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2938-4439dce6777c1b48542805c0fe6f25ab688af5158f6ae6b8da748ecec837cea93</citedby><cites>FETCH-LOGICAL-c2938-4439dce6777c1b48542805c0fe6f25ab688af5158f6ae6b8da748ecec837cea93</cites><orcidid>0000-0002-4248-0052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcav.2168$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcav.2168$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wong, Sai‐Keung</creatorcontrib><creatorcontrib>Wei, Xu‐Tao</creatorcontrib><title>Animation generation for object transportation with a rope using deep reinforcement learning</title><title>Computer animation and virtual worlds</title><description>This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. The challenge is that the agents need to master several skills, including approaching the block, using the rope to wrap around it, and then moving the block to a predefined goal position. We propose several reward terms to learn the transportation policy and the adjustment policy that govern the skills of the agents. Experiment results showed that the proposed approach was able to generate various animations in different settings, including rope lengths, block sizes, and block shapes. An ablation test revealed the effects of the reward terms. We also investigated factors that affected the performance of the two policies. This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. An ablation test revealed the effects of the proposed reward terms.</description><subject>Ablation</subject><subject>Animation</subject><subject>collaboration</subject><subject>Deep learning</subject><subject>object transportation</subject><subject>reinforcement learning</subject><subject>Skills</subject><subject>Transportation</subject><issn>1546-4261</issn><issn>1546-427X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1yW6y6bEU_0HBi4oHIWSzk7qlTdYktfTbm7rizdM8eL-Z4T2ELimZUELYjdFfE0aFPEIjyitRVKx-O_7Tgp6isxhXmRSMkhF6n7luo1PnHV6CgzBI6wP2zQpMwiloF3sf0uDsuvSBNQ6-B7yNnVviFqDHATqXlwxswCW8Bh1c9s7RidXrCBe_c4xe7m6f5w_F4un-cT5bFIZNS1lUVTltDYi6rg1tKskrJgk3xIKwjOtGSKktp1xaoUE0stV1JcGAkWVtQE_LMboa7vbBf24hJrXy2-DyS8UkY1yUjPBMXQ-UCT7GAFb1IWcPe0WJOnSncnfq0F1GiwHddWvY_8up-ez1h_8GHQVxYw</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Wong, Sai‐Keung</creator><creator>Wei, Xu‐Tao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4248-0052</orcidid></search><sort><creationdate>202305</creationdate><title>Animation generation for object transportation with a rope using deep reinforcement learning</title><author>Wong, Sai‐Keung ; Wei, Xu‐Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2938-4439dce6777c1b48542805c0fe6f25ab688af5158f6ae6b8da748ecec837cea93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Animation</topic><topic>collaboration</topic><topic>Deep learning</topic><topic>object transportation</topic><topic>reinforcement learning</topic><topic>Skills</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Sai‐Keung</creatorcontrib><creatorcontrib>Wei, Xu‐Tao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer animation and virtual worlds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Sai‐Keung</au><au>Wei, Xu‐Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Animation generation for object transportation with a rope using deep reinforcement learning</atitle><jtitle>Computer animation and virtual worlds</jtitle><date>2023-05</date><risdate>2023</risdate><volume>34</volume><issue>3-4</issue><epage>n/a</epage><issn>1546-4261</issn><eissn>1546-427X</eissn><abstract>This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. The challenge is that the agents need to master several skills, including approaching the block, using the rope to wrap around it, and then moving the block to a predefined goal position. We propose several reward terms to learn the transportation policy and the adjustment policy that govern the skills of the agents. Experiment results showed that the proposed approach was able to generate various animations in different settings, including rope lengths, block sizes, and block shapes. An ablation test revealed the effects of the reward terms. We also investigated factors that affected the performance of the two policies. This article presents a reinforcement learning‐based approach to generate animation in which two agents use a rope to collaboratively transport a block. An ablation test revealed the effects of the proposed reward terms.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cav.2168</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4248-0052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-4261
ispartof Computer animation and virtual worlds, 2023-05, Vol.34 (3-4), p.n/a
issn 1546-4261
1546-427X
language eng
recordid cdi_proquest_journals_2822563205
source Wiley Journals
subjects Ablation
Animation
collaboration
Deep learning
object transportation
reinforcement learning
Skills
Transportation
title Animation generation for object transportation with a rope using deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Animation%20generation%20for%20object%20transportation%20with%20a%20rope%20using%20deep%20reinforcement%20learning&rft.jtitle=Computer%20animation%20and%20virtual%20worlds&rft.au=Wong,%20Sai%E2%80%90Keung&rft.date=2023-05&rft.volume=34&rft.issue=3-4&rft.epage=n/a&rft.issn=1546-4261&rft.eissn=1546-427X&rft_id=info:doi/10.1002/cav.2168&rft_dat=%3Cproquest_cross%3E2822563205%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822563205&rft_id=info:pmid/&rfr_iscdi=true