An automatic data quality approach to assess semantic data from cultural heritage institutions

In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Information Science and Technology 2023-07, Vol.74 (7), p.866-878
1. Verfasser: Candela, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 878
container_issue 7
container_start_page 866
container_title Journal of the American Society for Information Science and Technology
container_volume 74
creator Candela, Gustavo
description In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.
doi_str_mv 10.1002/asi.24761
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822179002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822179002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpc5tLlqV4KRRcqFvDaZqxKTOTNhdk3t7Rke5cnX_xnfMfPoRuKZlTQtgCgp0zURb0Ak0Y5ySjheCX58zzazQL4UAIoURWOaMT9LHsMKToWohW4x1EwKcEjY09huPRO9B7HB2GEEwIOJgWujNYe9dinZqYPDR4b7yN8Gmw7UK0MUXrunCDrmpogpn9zSl6f3x4Wz1nm5en9Wq5yTTnjGZMFlxowYCWFEohdbXlMmeM5KZkICmtdC4k2eXMELOrJVBiaskrwYsattuaT9HdeHd4-ZRMiOrgku-GSsUqxmgpBz8DdT9S2rsQvKnV0dsWfK8oUT8G1WBQ_Roc2MXIftnG9P-Davm6Hje-AX8PcjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822179002</pqid></control><display><type>article</type><title>An automatic data quality approach to assess semantic data from cultural heritage institutions</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Candela, Gustavo</creator><creatorcontrib>Candela, Gustavo</creatorcontrib><description>In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.</description><identifier>ISSN: 2330-1635</identifier><identifier>EISSN: 2330-1643</identifier><identifier>DOI: 10.1002/asi.24761</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial intelligence ; Cultural heritage ; Cultural resources ; Institutions ; Linked Data ; Machine learning ; Open data ; Quality assessment ; Semantics</subject><ispartof>Journal of the American Society for Information Science and Technology, 2023-07, Vol.74 (7), p.866-878</ispartof><rights>2023 The Author. published by Wiley Periodicals LLC on behalf of Association for Information Science and Technology.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</citedby><cites>FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</cites><orcidid>0000-0001-6122-0777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasi.24761$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasi.24761$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Candela, Gustavo</creatorcontrib><title>An automatic data quality approach to assess semantic data from cultural heritage institutions</title><title>Journal of the American Society for Information Science and Technology</title><description>In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.</description><subject>Artificial intelligence</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Institutions</subject><subject>Linked Data</subject><subject>Machine learning</subject><subject>Open data</subject><subject>Quality assessment</subject><subject>Semantics</subject><issn>2330-1635</issn><issn>2330-1643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpc5tLlqV4KRRcqFvDaZqxKTOTNhdk3t7Rke5cnX_xnfMfPoRuKZlTQtgCgp0zURb0Ak0Y5ySjheCX58zzazQL4UAIoURWOaMT9LHsMKToWohW4x1EwKcEjY09huPRO9B7HB2GEEwIOJgWujNYe9dinZqYPDR4b7yN8Gmw7UK0MUXrunCDrmpogpn9zSl6f3x4Wz1nm5en9Wq5yTTnjGZMFlxowYCWFEohdbXlMmeM5KZkICmtdC4k2eXMELOrJVBiaskrwYsattuaT9HdeHd4-ZRMiOrgku-GSsUqxmgpBz8DdT9S2rsQvKnV0dsWfK8oUT8G1WBQ_Roc2MXIftnG9P-Davm6Hje-AX8PcjM</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Candela, Gustavo</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6122-0777</orcidid></search><sort><creationdate>202307</creationdate><title>An automatic data quality approach to assess semantic data from cultural heritage institutions</title><author>Candela, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Institutions</topic><topic>Linked Data</topic><topic>Machine learning</topic><topic>Open data</topic><topic>Quality assessment</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candela, Gustavo</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the American Society for Information Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candela, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automatic data quality approach to assess semantic data from cultural heritage institutions</atitle><jtitle>Journal of the American Society for Information Science and Technology</jtitle><date>2023-07</date><risdate>2023</risdate><volume>74</volume><issue>7</issue><spage>866</spage><epage>878</epage><pages>866-878</pages><issn>2330-1635</issn><eissn>2330-1643</eissn><abstract>In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/asi.24761</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6122-0777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-1635
ispartof Journal of the American Society for Information Science and Technology, 2023-07, Vol.74 (7), p.866-878
issn 2330-1635
2330-1643
language eng
recordid cdi_proquest_journals_2822179002
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Artificial intelligence
Cultural heritage
Cultural resources
Institutions
Linked Data
Machine learning
Open data
Quality assessment
Semantics
title An automatic data quality approach to assess semantic data from cultural heritage institutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automatic%20data%20quality%20approach%20to%20assess%20semantic%20data%20from%20cultural%20heritage%20institutions&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology&rft.au=Candela,%20Gustavo&rft.date=2023-07&rft.volume=74&rft.issue=7&rft.spage=866&rft.epage=878&rft.pages=866-878&rft.issn=2330-1635&rft.eissn=2330-1643&rft_id=info:doi/10.1002/asi.24761&rft_dat=%3Cproquest_cross%3E2822179002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822179002&rft_id=info:pmid/&rfr_iscdi=true