An automatic data quality approach to assess semantic data from cultural heritage institutions
In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Information Science and Technology 2023-07, Vol.74 (7), p.866-878 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 878 |
---|---|
container_issue | 7 |
container_start_page | 866 |
container_title | Journal of the American Society for Information Science and Technology |
container_volume | 74 |
creator | Candela, Gustavo |
description | In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections. |
doi_str_mv | 10.1002/asi.24761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822179002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822179002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpc5tLlqV4KRRcqFvDaZqxKTOTNhdk3t7Rke5cnX_xnfMfPoRuKZlTQtgCgp0zURb0Ak0Y5ySjheCX58zzazQL4UAIoURWOaMT9LHsMKToWohW4x1EwKcEjY09huPRO9B7HB2GEEwIOJgWujNYe9dinZqYPDR4b7yN8Gmw7UK0MUXrunCDrmpogpn9zSl6f3x4Wz1nm5en9Wq5yTTnjGZMFlxowYCWFEohdbXlMmeM5KZkICmtdC4k2eXMELOrJVBiaskrwYsattuaT9HdeHd4-ZRMiOrgku-GSsUqxmgpBz8DdT9S2rsQvKnV0dsWfK8oUT8G1WBQ_Roc2MXIftnG9P-Davm6Hje-AX8PcjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822179002</pqid></control><display><type>article</type><title>An automatic data quality approach to assess semantic data from cultural heritage institutions</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Candela, Gustavo</creator><creatorcontrib>Candela, Gustavo</creatorcontrib><description>In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.</description><identifier>ISSN: 2330-1635</identifier><identifier>EISSN: 2330-1643</identifier><identifier>DOI: 10.1002/asi.24761</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Artificial intelligence ; Cultural heritage ; Cultural resources ; Institutions ; Linked Data ; Machine learning ; Open data ; Quality assessment ; Semantics</subject><ispartof>Journal of the American Society for Information Science and Technology, 2023-07, Vol.74 (7), p.866-878</ispartof><rights>2023 The Author. published by Wiley Periodicals LLC on behalf of Association for Information Science and Technology.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</citedby><cites>FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</cites><orcidid>0000-0001-6122-0777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasi.24761$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasi.24761$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Candela, Gustavo</creatorcontrib><title>An automatic data quality approach to assess semantic data from cultural heritage institutions</title><title>Journal of the American Society for Information Science and Technology</title><description>In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.</description><subject>Artificial intelligence</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Institutions</subject><subject>Linked Data</subject><subject>Machine learning</subject><subject>Open data</subject><subject>Quality assessment</subject><subject>Semantics</subject><issn>2330-1635</issn><issn>2330-1643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMtKAzEUhoMoWGoXvkHAlYtpc5tLlqV4KRRcqFvDaZqxKTOTNhdk3t7Rke5cnX_xnfMfPoRuKZlTQtgCgp0zURb0Ak0Y5ySjheCX58zzazQL4UAIoURWOaMT9LHsMKToWohW4x1EwKcEjY09huPRO9B7HB2GEEwIOJgWujNYe9dinZqYPDR4b7yN8Gmw7UK0MUXrunCDrmpogpn9zSl6f3x4Wz1nm5en9Wq5yTTnjGZMFlxowYCWFEohdbXlMmeM5KZkICmtdC4k2eXMELOrJVBiaskrwYsattuaT9HdeHd4-ZRMiOrgku-GSsUqxmgpBz8DdT9S2rsQvKnV0dsWfK8oUT8G1WBQ_Roc2MXIftnG9P-Davm6Hje-AX8PcjM</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Candela, Gustavo</creator><general>John Wiley & Sons, Inc</general><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6122-0777</orcidid></search><sort><creationdate>202307</creationdate><title>An automatic data quality approach to assess semantic data from cultural heritage institutions</title><author>Candela, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3321-29634c42a171a749c8b3952205e72a9118c5490d52e0edf9a10ef938436fabbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Institutions</topic><topic>Linked Data</topic><topic>Machine learning</topic><topic>Open data</topic><topic>Quality assessment</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candela, Gustavo</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the American Society for Information Science and Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candela, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automatic data quality approach to assess semantic data from cultural heritage institutions</atitle><jtitle>Journal of the American Society for Information Science and Technology</jtitle><date>2023-07</date><risdate>2023</risdate><volume>74</volume><issue>7</issue><spage>866</spage><epage>878</epage><pages>866-878</pages><issn>2330-1635</issn><eissn>2330-1643</eissn><abstract>In recent years, cultural heritage institutions have been exploring the benefits of applying Linked Open Data to their catalogs and digital materials. Innovative and creative methods have emerged to publish and reuse digital contents to promote computational access, such as the concepts of Labs and Collections as Data. Data quality has become a requirement for researchers and training methods based on artificial intelligence and machine learning. This article explores how the quality of Linked Open Data made available by cultural heritage institutions can be automatically assessed. The results obtained can be useful for other institutions who wish to publish and assess their collections.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/asi.24761</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6122-0777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-1635 |
ispartof | Journal of the American Society for Information Science and Technology, 2023-07, Vol.74 (7), p.866-878 |
issn | 2330-1635 2330-1643 |
language | eng |
recordid | cdi_proquest_journals_2822179002 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Artificial intelligence Cultural heritage Cultural resources Institutions Linked Data Machine learning Open data Quality assessment Semantics |
title | An automatic data quality approach to assess semantic data from cultural heritage institutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automatic%20data%20quality%20approach%20to%20assess%20semantic%20data%20from%20cultural%20heritage%20institutions&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Information%20Science%20and%20Technology&rft.au=Candela,%20Gustavo&rft.date=2023-07&rft.volume=74&rft.issue=7&rft.spage=866&rft.epage=878&rft.pages=866-878&rft.issn=2330-1635&rft.eissn=2330-1643&rft_id=info:doi/10.1002/asi.24761&rft_dat=%3Cproquest_cross%3E2822179002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822179002&rft_id=info:pmid/&rfr_iscdi=true |