Forecast‐ready models to support fisheries' adaptation to global variability and change

Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fisheries oceanography 2023-07, Vol.32 (4), p.405-417
Hauptverfasser: Scales, Kylie L., Moore, Thomas S., Sloyan, Bernadette, Spillman, Claire M., Eveson, J. Paige, Patterson, Toby A., Williams, Ashley J., Hobday, Alistair J., Hartog, Jason R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 4
container_start_page 405
container_title Fisheries oceanography
container_volume 32
creator Scales, Kylie L.
Moore, Thomas S.
Sloyan, Bernadette
Spillman, Claire M.
Eveson, J. Paige
Patterson, Toby A.
Williams, Ashley J.
Hobday, Alistair J.
Hartog, Jason R.
description Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.
doi_str_mv 10.1111/fog.12636
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822158348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822158348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYPvkHAg3hIu1_56FGKrUKhFz14Wia7k3ZLmo27qZKbj-Az-iSmxqvDwPwPv5mBHyHXjE5YX9PSbSaMpyI9ISMm0iTmks1O-0wTGaeUpufkIoQdpSwTWTYirwvnUUNovz-_PILpor0zWIWodVE4NI3zbVTasEVvMdxGYKBpobWuPgKbyhVQRe_gLRS2sm0XQW0ivYV6g5fkrIQq4NXfHJOXxcPz_DFerZdP8_tVrIXgaZxQnEngJgHIciGw0JBIzFnJhKQoRGbyZDYznB9b6pJq1JKDKNBAITkTY3Iz3G28eztgaNXOHXzdv1Q855wluZB5T90NlPYuBI-larzdg-8Uo-poTvXm1K-5np0O7IetsPsfVIv1ctj4AagScVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822158348</pqid></control><display><type>article</type><title>Forecast‐ready models to support fisheries' adaptation to global variability and change</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scales, Kylie L. ; Moore, Thomas S. ; Sloyan, Bernadette ; Spillman, Claire M. ; Eveson, J. Paige ; Patterson, Toby A. ; Williams, Ashley J. ; Hobday, Alistair J. ; Hartog, Jason R.</creator><creatorcontrib>Scales, Kylie L. ; Moore, Thomas S. ; Sloyan, Bernadette ; Spillman, Claire M. ; Eveson, J. Paige ; Patterson, Toby A. ; Williams, Ashley J. ; Hobday, Alistair J. ; Hartog, Jason R.</creatorcontrib><description>Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.</description><identifier>ISSN: 1054-6006</identifier><identifier>EISSN: 1365-2419</identifier><identifier>DOI: 10.1111/fog.12636</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Adaptation ; boosted regression tree ; Catch per unit effort ; Climate ; Climate adaptation ; climate change ; Climate change adaptation ; Columnar structure ; Decision making ; ecological forecast ; ecological forecasting ; Enthalpy ; Fisheries ; Fishery data ; Heat content ; Marine ecology ; Marine resources ; Ocean models ; Prediction models ; seasonal forecast ; tuna ; Upper ocean ; Variability ; Water circulation ; Water column ; Water depth</subject><ispartof>Fisheries oceanography, 2023-07, Vol.32 (4), p.405-417</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</citedby><cites>FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</cites><orcidid>0000-0003-0843-0956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffog.12636$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffog.12636$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Scales, Kylie L.</creatorcontrib><creatorcontrib>Moore, Thomas S.</creatorcontrib><creatorcontrib>Sloyan, Bernadette</creatorcontrib><creatorcontrib>Spillman, Claire M.</creatorcontrib><creatorcontrib>Eveson, J. Paige</creatorcontrib><creatorcontrib>Patterson, Toby A.</creatorcontrib><creatorcontrib>Williams, Ashley J.</creatorcontrib><creatorcontrib>Hobday, Alistair J.</creatorcontrib><creatorcontrib>Hartog, Jason R.</creatorcontrib><title>Forecast‐ready models to support fisheries' adaptation to global variability and change</title><title>Fisheries oceanography</title><description>Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.</description><subject>Adaptation</subject><subject>boosted regression tree</subject><subject>Catch per unit effort</subject><subject>Climate</subject><subject>Climate adaptation</subject><subject>climate change</subject><subject>Climate change adaptation</subject><subject>Columnar structure</subject><subject>Decision making</subject><subject>ecological forecast</subject><subject>ecological forecasting</subject><subject>Enthalpy</subject><subject>Fisheries</subject><subject>Fishery data</subject><subject>Heat content</subject><subject>Marine ecology</subject><subject>Marine resources</subject><subject>Ocean models</subject><subject>Prediction models</subject><subject>seasonal forecast</subject><subject>tuna</subject><subject>Upper ocean</subject><subject>Variability</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water depth</subject><issn>1054-6006</issn><issn>1365-2419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1Kw0AQxxdRsFYPvkHAg3hIu1_56FGKrUKhFz14Wia7k3ZLmo27qZKbj-Az-iSmxqvDwPwPv5mBHyHXjE5YX9PSbSaMpyI9ISMm0iTmks1O-0wTGaeUpufkIoQdpSwTWTYirwvnUUNovz-_PILpor0zWIWodVE4NI3zbVTasEVvMdxGYKBpobWuPgKbyhVQRe_gLRS2sm0XQW0ivYV6g5fkrIQq4NXfHJOXxcPz_DFerZdP8_tVrIXgaZxQnEngJgHIciGw0JBIzFnJhKQoRGbyZDYznB9b6pJq1JKDKNBAITkTY3Iz3G28eztgaNXOHXzdv1Q855wluZB5T90NlPYuBI-larzdg-8Uo-poTvXm1K-5np0O7IetsPsfVIv1ctj4AagScVo</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Scales, Kylie L.</creator><creator>Moore, Thomas S.</creator><creator>Sloyan, Bernadette</creator><creator>Spillman, Claire M.</creator><creator>Eveson, J. Paige</creator><creator>Patterson, Toby A.</creator><creator>Williams, Ashley J.</creator><creator>Hobday, Alistair J.</creator><creator>Hartog, Jason R.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0843-0956</orcidid></search><sort><creationdate>202307</creationdate><title>Forecast‐ready models to support fisheries' adaptation to global variability and change</title><author>Scales, Kylie L. ; Moore, Thomas S. ; Sloyan, Bernadette ; Spillman, Claire M. ; Eveson, J. Paige ; Patterson, Toby A. ; Williams, Ashley J. ; Hobday, Alistair J. ; Hartog, Jason R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>boosted regression tree</topic><topic>Catch per unit effort</topic><topic>Climate</topic><topic>Climate adaptation</topic><topic>climate change</topic><topic>Climate change adaptation</topic><topic>Columnar structure</topic><topic>Decision making</topic><topic>ecological forecast</topic><topic>ecological forecasting</topic><topic>Enthalpy</topic><topic>Fisheries</topic><topic>Fishery data</topic><topic>Heat content</topic><topic>Marine ecology</topic><topic>Marine resources</topic><topic>Ocean models</topic><topic>Prediction models</topic><topic>seasonal forecast</topic><topic>tuna</topic><topic>Upper ocean</topic><topic>Variability</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scales, Kylie L.</creatorcontrib><creatorcontrib>Moore, Thomas S.</creatorcontrib><creatorcontrib>Sloyan, Bernadette</creatorcontrib><creatorcontrib>Spillman, Claire M.</creatorcontrib><creatorcontrib>Eveson, J. Paige</creatorcontrib><creatorcontrib>Patterson, Toby A.</creatorcontrib><creatorcontrib>Williams, Ashley J.</creatorcontrib><creatorcontrib>Hobday, Alistair J.</creatorcontrib><creatorcontrib>Hartog, Jason R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fisheries oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scales, Kylie L.</au><au>Moore, Thomas S.</au><au>Sloyan, Bernadette</au><au>Spillman, Claire M.</au><au>Eveson, J. Paige</au><au>Patterson, Toby A.</au><au>Williams, Ashley J.</au><au>Hobday, Alistair J.</au><au>Hartog, Jason R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast‐ready models to support fisheries' adaptation to global variability and change</atitle><jtitle>Fisheries oceanography</jtitle><date>2023-07</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>405</spage><epage>417</epage><pages>405-417</pages><issn>1054-6006</issn><eissn>1365-2419</eissn><abstract>Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/fog.12636</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0843-0956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-6006
ispartof Fisheries oceanography, 2023-07, Vol.32 (4), p.405-417
issn 1054-6006
1365-2419
language eng
recordid cdi_proquest_journals_2822158348
source Wiley Online Library Journals Frontfile Complete
subjects Adaptation
boosted regression tree
Catch per unit effort
Climate
Climate adaptation
climate change
Climate change adaptation
Columnar structure
Decision making
ecological forecast
ecological forecasting
Enthalpy
Fisheries
Fishery data
Heat content
Marine ecology
Marine resources
Ocean models
Prediction models
seasonal forecast
tuna
Upper ocean
Variability
Water circulation
Water column
Water depth
title Forecast‐ready models to support fisheries' adaptation to global variability and change
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%E2%80%90ready%20models%20to%20support%20fisheries'%20adaptation%20to%20global%20variability%20and%20change&rft.jtitle=Fisheries%20oceanography&rft.au=Scales,%20Kylie%20L.&rft.date=2023-07&rft.volume=32&rft.issue=4&rft.spage=405&rft.epage=417&rft.pages=405-417&rft.issn=1054-6006&rft.eissn=1365-2419&rft_id=info:doi/10.1111/fog.12636&rft_dat=%3Cproquest_cross%3E2822158348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822158348&rft_id=info:pmid/&rfr_iscdi=true