Forecast‐ready models to support fisheries' adaptation to global variability and change
Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skil...
Gespeichert in:
Veröffentlicht in: | Fisheries oceanography 2023-07, Vol.32 (4), p.405-417 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 4 |
container_start_page | 405 |
container_title | Fisheries oceanography |
container_volume | 32 |
creator | Scales, Kylie L. Moore, Thomas S. Sloyan, Bernadette Spillman, Claire M. Eveson, J. Paige Patterson, Toby A. Williams, Ashley J. Hobday, Alistair J. Hartog, Jason R. |
description | Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics. |
doi_str_mv | 10.1111/fog.12636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2822158348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822158348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQxxdRsFYPvkHAg3hIu1_56FGKrUKhFz14Wia7k3ZLmo27qZKbj-Az-iSmxqvDwPwPv5mBHyHXjE5YX9PSbSaMpyI9ISMm0iTmks1O-0wTGaeUpufkIoQdpSwTWTYirwvnUUNovz-_PILpor0zWIWodVE4NI3zbVTasEVvMdxGYKBpobWuPgKbyhVQRe_gLRS2sm0XQW0ivYV6g5fkrIQq4NXfHJOXxcPz_DFerZdP8_tVrIXgaZxQnEngJgHIciGw0JBIzFnJhKQoRGbyZDYznB9b6pJq1JKDKNBAITkTY3Iz3G28eztgaNXOHXzdv1Q855wluZB5T90NlPYuBI-larzdg-8Uo-poTvXm1K-5np0O7IetsPsfVIv1ctj4AagScVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822158348</pqid></control><display><type>article</type><title>Forecast‐ready models to support fisheries' adaptation to global variability and change</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scales, Kylie L. ; Moore, Thomas S. ; Sloyan, Bernadette ; Spillman, Claire M. ; Eveson, J. Paige ; Patterson, Toby A. ; Williams, Ashley J. ; Hobday, Alistair J. ; Hartog, Jason R.</creator><creatorcontrib>Scales, Kylie L. ; Moore, Thomas S. ; Sloyan, Bernadette ; Spillman, Claire M. ; Eveson, J. Paige ; Patterson, Toby A. ; Williams, Ashley J. ; Hobday, Alistair J. ; Hartog, Jason R.</creatorcontrib><description>Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.</description><identifier>ISSN: 1054-6006</identifier><identifier>EISSN: 1365-2419</identifier><identifier>DOI: 10.1111/fog.12636</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Adaptation ; boosted regression tree ; Catch per unit effort ; Climate ; Climate adaptation ; climate change ; Climate change adaptation ; Columnar structure ; Decision making ; ecological forecast ; ecological forecasting ; Enthalpy ; Fisheries ; Fishery data ; Heat content ; Marine ecology ; Marine resources ; Ocean models ; Prediction models ; seasonal forecast ; tuna ; Upper ocean ; Variability ; Water circulation ; Water column ; Water depth</subject><ispartof>Fisheries oceanography, 2023-07, Vol.32 (4), p.405-417</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</citedby><cites>FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</cites><orcidid>0000-0003-0843-0956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffog.12636$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffog.12636$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Scales, Kylie L.</creatorcontrib><creatorcontrib>Moore, Thomas S.</creatorcontrib><creatorcontrib>Sloyan, Bernadette</creatorcontrib><creatorcontrib>Spillman, Claire M.</creatorcontrib><creatorcontrib>Eveson, J. Paige</creatorcontrib><creatorcontrib>Patterson, Toby A.</creatorcontrib><creatorcontrib>Williams, Ashley J.</creatorcontrib><creatorcontrib>Hobday, Alistair J.</creatorcontrib><creatorcontrib>Hartog, Jason R.</creatorcontrib><title>Forecast‐ready models to support fisheries' adaptation to global variability and change</title><title>Fisheries oceanography</title><description>Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.</description><subject>Adaptation</subject><subject>boosted regression tree</subject><subject>Catch per unit effort</subject><subject>Climate</subject><subject>Climate adaptation</subject><subject>climate change</subject><subject>Climate change adaptation</subject><subject>Columnar structure</subject><subject>Decision making</subject><subject>ecological forecast</subject><subject>ecological forecasting</subject><subject>Enthalpy</subject><subject>Fisheries</subject><subject>Fishery data</subject><subject>Heat content</subject><subject>Marine ecology</subject><subject>Marine resources</subject><subject>Ocean models</subject><subject>Prediction models</subject><subject>seasonal forecast</subject><subject>tuna</subject><subject>Upper ocean</subject><subject>Variability</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water depth</subject><issn>1054-6006</issn><issn>1365-2419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kM1Kw0AQxxdRsFYPvkHAg3hIu1_56FGKrUKhFz14Wia7k3ZLmo27qZKbj-Az-iSmxqvDwPwPv5mBHyHXjE5YX9PSbSaMpyI9ISMm0iTmks1O-0wTGaeUpufkIoQdpSwTWTYirwvnUUNovz-_PILpor0zWIWodVE4NI3zbVTasEVvMdxGYKBpobWuPgKbyhVQRe_gLRS2sm0XQW0ivYV6g5fkrIQq4NXfHJOXxcPz_DFerZdP8_tVrIXgaZxQnEngJgHIciGw0JBIzFnJhKQoRGbyZDYznB9b6pJq1JKDKNBAITkTY3Iz3G28eztgaNXOHXzdv1Q855wluZB5T90NlPYuBI-larzdg-8Uo-poTvXm1K-5np0O7IetsPsfVIv1ctj4AagScVo</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Scales, Kylie L.</creator><creator>Moore, Thomas S.</creator><creator>Sloyan, Bernadette</creator><creator>Spillman, Claire M.</creator><creator>Eveson, J. Paige</creator><creator>Patterson, Toby A.</creator><creator>Williams, Ashley J.</creator><creator>Hobday, Alistair J.</creator><creator>Hartog, Jason R.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0843-0956</orcidid></search><sort><creationdate>202307</creationdate><title>Forecast‐ready models to support fisheries' adaptation to global variability and change</title><author>Scales, Kylie L. ; Moore, Thomas S. ; Sloyan, Bernadette ; Spillman, Claire M. ; Eveson, J. Paige ; Patterson, Toby A. ; Williams, Ashley J. ; Hobday, Alistair J. ; Hartog, Jason R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-50e94a2d5aa7833ebca54e81f1340e337d8599d22d22d4cf0cec42a3bedab4213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>boosted regression tree</topic><topic>Catch per unit effort</topic><topic>Climate</topic><topic>Climate adaptation</topic><topic>climate change</topic><topic>Climate change adaptation</topic><topic>Columnar structure</topic><topic>Decision making</topic><topic>ecological forecast</topic><topic>ecological forecasting</topic><topic>Enthalpy</topic><topic>Fisheries</topic><topic>Fishery data</topic><topic>Heat content</topic><topic>Marine ecology</topic><topic>Marine resources</topic><topic>Ocean models</topic><topic>Prediction models</topic><topic>seasonal forecast</topic><topic>tuna</topic><topic>Upper ocean</topic><topic>Variability</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scales, Kylie L.</creatorcontrib><creatorcontrib>Moore, Thomas S.</creatorcontrib><creatorcontrib>Sloyan, Bernadette</creatorcontrib><creatorcontrib>Spillman, Claire M.</creatorcontrib><creatorcontrib>Eveson, J. Paige</creatorcontrib><creatorcontrib>Patterson, Toby A.</creatorcontrib><creatorcontrib>Williams, Ashley J.</creatorcontrib><creatorcontrib>Hobday, Alistair J.</creatorcontrib><creatorcontrib>Hartog, Jason R.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fisheries oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scales, Kylie L.</au><au>Moore, Thomas S.</au><au>Sloyan, Bernadette</au><au>Spillman, Claire M.</au><au>Eveson, J. Paige</au><au>Patterson, Toby A.</au><au>Williams, Ashley J.</au><au>Hobday, Alistair J.</au><au>Hartog, Jason R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast‐ready models to support fisheries' adaptation to global variability and change</atitle><jtitle>Fisheries oceanography</jtitle><date>2023-07</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>405</spage><epage>417</epage><pages>405-417</pages><issn>1054-6006</issn><eissn>1365-2419</eissn><abstract>Ocean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/fog.12636</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0843-0956</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6006 |
ispartof | Fisheries oceanography, 2023-07, Vol.32 (4), p.405-417 |
issn | 1054-6006 1365-2419 |
language | eng |
recordid | cdi_proquest_journals_2822158348 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adaptation boosted regression tree Catch per unit effort Climate Climate adaptation climate change Climate change adaptation Columnar structure Decision making ecological forecast ecological forecasting Enthalpy Fisheries Fishery data Heat content Marine ecology Marine resources Ocean models Prediction models seasonal forecast tuna Upper ocean Variability Water circulation Water column Water depth |
title | Forecast‐ready models to support fisheries' adaptation to global variability and change |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%E2%80%90ready%20models%20to%20support%20fisheries'%20adaptation%20to%20global%20variability%20and%20change&rft.jtitle=Fisheries%20oceanography&rft.au=Scales,%20Kylie%20L.&rft.date=2023-07&rft.volume=32&rft.issue=4&rft.spage=405&rft.epage=417&rft.pages=405-417&rft.issn=1054-6006&rft.eissn=1365-2419&rft_id=info:doi/10.1111/fog.12636&rft_dat=%3Cproquest_cross%3E2822158348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822158348&rft_id=info:pmid/&rfr_iscdi=true |