Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding
Hybrid metal extrusion & bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2023-07, Vol.54 (7), p.2689-2702 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2702 |
---|---|
container_issue | 7 |
container_start_page | 2689 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 54 |
creator | Bergh, Tina Fyhn, Hursanay Sandnes, Lise Blindheim, Jørgen Grong, Øystein Holmestad, Randi Berto, Filippo Vullum, Per Erik |
description | Hybrid metal extrusion & bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu. |
doi_str_mv | 10.1007/s11661-023-07047-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821746183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821746183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFb_gKuA4KrRvHnpZLqspX7R4sK6DmmTKSnTpCYZsP_e1AruXL27OPc8uEVxDewOGBP3EaCqgLISKROMC4onRQ-GHCmMODvNmQmkw6rE8-Iixg1jDEZY9Qo379pk6VYlE6xqyau3zro18Q1Rjozbbmtdt82h9XuSPJn43c6EAXlPxrSDzGiysEk5m6Hlnjzvl8FqMjcpu6ZfKXTRekduyYN3Onsvi7NGtdFc_d5-8fE4XUye6ezt6WUyntEVVphoDQbqGrVSy8pwrkumoRHAmRjhcliqkVmh1kaAqZGjMIgNrtBU0Ogh0xyxX9wcvbvgPzsTk9z4Lrj8UpZ1CYJXUB-o8kitgo8xmEbugt2qsJfA5GFXedxV5l3lz67yUMJjKWbYrU34U__T-gZwx3o5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821746183</pqid></control><display><type>article</type><title>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding</title><source>SpringerNature Journals</source><creator>Bergh, Tina ; Fyhn, Hursanay ; Sandnes, Lise ; Blindheim, Jørgen ; Grong, Øystein ; Holmestad, Randi ; Berto, Filippo ; Vullum, Per Erik</creator><creatorcontrib>Bergh, Tina ; Fyhn, Hursanay ; Sandnes, Lise ; Blindheim, Jørgen ; Grong, Øystein ; Holmestad, Randi ; Berto, Filippo ; Vullum, Per Erik</creatorcontrib><description>Hybrid metal extrusion & bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-023-07047-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Aluminum base alloys ; Bonding ; Butt joints ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Continuous extrusion ; Copper ; Dissimilar material joining ; Electron diffraction ; Grooves ; Intermetallic phases ; Joining ; Machining ; Materials Science ; Metallic Materials ; Nanotechnology ; Original Research Article ; Plastic deformation ; Pressure welding ; Steel ; Structural Materials ; Surfaces and Interfaces ; Tensile properties ; Tensile tests ; Thin Films ; Titanium</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-07, Vol.54 (7), p.2689-2702</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</citedby><cites>FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-023-07047-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-023-07047-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bergh, Tina</creatorcontrib><creatorcontrib>Fyhn, Hursanay</creatorcontrib><creatorcontrib>Sandnes, Lise</creatorcontrib><creatorcontrib>Blindheim, Jørgen</creatorcontrib><creatorcontrib>Grong, Øystein</creatorcontrib><creatorcontrib>Holmestad, Randi</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><title>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Hybrid metal extrusion & bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Bonding</subject><subject>Butt joints</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Continuous extrusion</subject><subject>Copper</subject><subject>Dissimilar material joining</subject><subject>Electron diffraction</subject><subject>Grooves</subject><subject>Intermetallic phases</subject><subject>Joining</subject><subject>Machining</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Plastic deformation</subject><subject>Pressure welding</subject><subject>Steel</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Thin Films</subject><subject>Titanium</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURQdRsFb_gKuA4KrRvHnpZLqspX7R4sK6DmmTKSnTpCYZsP_e1AruXL27OPc8uEVxDewOGBP3EaCqgLISKROMC4onRQ-GHCmMODvNmQmkw6rE8-Iixg1jDEZY9Qo379pk6VYlE6xqyau3zro18Q1Rjozbbmtdt82h9XuSPJn43c6EAXlPxrSDzGiysEk5m6Hlnjzvl8FqMjcpu6ZfKXTRekduyYN3Onsvi7NGtdFc_d5-8fE4XUye6ezt6WUyntEVVphoDQbqGrVSy8pwrkumoRHAmRjhcliqkVmh1kaAqZGjMIgNrtBU0Ogh0xyxX9wcvbvgPzsTk9z4Lrj8UpZ1CYJXUB-o8kitgo8xmEbugt2qsJfA5GFXedxV5l3lz67yUMJjKWbYrU34U__T-gZwx3o5</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bergh, Tina</creator><creator>Fyhn, Hursanay</creator><creator>Sandnes, Lise</creator><creator>Blindheim, Jørgen</creator><creator>Grong, Øystein</creator><creator>Holmestad, Randi</creator><creator>Berto, Filippo</creator><creator>Vullum, Per Erik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230701</creationdate><title>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding</title><author>Bergh, Tina ; Fyhn, Hursanay ; Sandnes, Lise ; Blindheim, Jørgen ; Grong, Øystein ; Holmestad, Randi ; Berto, Filippo ; Vullum, Per Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Bonding</topic><topic>Butt joints</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Continuous extrusion</topic><topic>Copper</topic><topic>Dissimilar material joining</topic><topic>Electron diffraction</topic><topic>Grooves</topic><topic>Intermetallic phases</topic><topic>Joining</topic><topic>Machining</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Plastic deformation</topic><topic>Pressure welding</topic><topic>Steel</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Thin Films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergh, Tina</creatorcontrib><creatorcontrib>Fyhn, Hursanay</creatorcontrib><creatorcontrib>Sandnes, Lise</creatorcontrib><creatorcontrib>Blindheim, Jørgen</creatorcontrib><creatorcontrib>Grong, Øystein</creatorcontrib><creatorcontrib>Holmestad, Randi</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergh, Tina</au><au>Fyhn, Hursanay</au><au>Sandnes, Lise</au><au>Blindheim, Jørgen</au><au>Grong, Øystein</au><au>Holmestad, Randi</au><au>Berto, Filippo</au><au>Vullum, Per Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>54</volume><issue>7</issue><spage>2689</spage><epage>2702</epage><pages>2689-2702</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Hybrid metal extrusion & bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-023-07047-3</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-07, Vol.54 (7), p.2689-2702 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2821746183 |
source | SpringerNature Journals |
subjects | Aluminum Aluminum base alloys Bonding Butt joints Characterization and Evaluation of Materials Chemistry and Materials Science Continuous extrusion Copper Dissimilar material joining Electron diffraction Grooves Intermetallic phases Joining Machining Materials Science Metallic Materials Nanotechnology Original Research Article Plastic deformation Pressure welding Steel Structural Materials Surfaces and Interfaces Tensile properties Tensile tests Thin Films Titanium |
title | Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-material%20Joining%20of%20an%20Aluminum%20Alloy%20to%20Copper,%20Steel,%20and%20Titanium%20by%20Hybrid%20Metal%20Extrusion%20&%20Bonding&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Bergh,%20Tina&rft.date=2023-07-01&rft.volume=54&rft.issue=7&rft.spage=2689&rft.epage=2702&rft.pages=2689-2702&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-023-07047-3&rft_dat=%3Cproquest_cross%3E2821746183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821746183&rft_id=info:pmid/&rfr_iscdi=true |