Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding

Hybrid metal extrusion & bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2023-07, Vol.54 (7), p.2689-2702
Hauptverfasser: Bergh, Tina, Fyhn, Hursanay, Sandnes, Lise, Blindheim, Jørgen, Grong, Øystein, Holmestad, Randi, Berto, Filippo, Vullum, Per Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2702
container_issue 7
container_start_page 2689
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 54
creator Bergh, Tina
Fyhn, Hursanay
Sandnes, Lise
Blindheim, Jørgen
Grong, Øystein
Holmestad, Randi
Berto, Filippo
Vullum, Per Erik
description Hybrid metal extrusion & bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu.
doi_str_mv 10.1007/s11661-023-07047-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2821746183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2821746183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFb_gKuA4KrRvHnpZLqspX7R4sK6DmmTKSnTpCYZsP_e1AruXL27OPc8uEVxDewOGBP3EaCqgLISKROMC4onRQ-GHCmMODvNmQmkw6rE8-Iixg1jDEZY9Qo379pk6VYlE6xqyau3zro18Q1Rjozbbmtdt82h9XuSPJn43c6EAXlPxrSDzGiysEk5m6Hlnjzvl8FqMjcpu6ZfKXTRekduyYN3Onsvi7NGtdFc_d5-8fE4XUye6ezt6WUyntEVVphoDQbqGrVSy8pwrkumoRHAmRjhcliqkVmh1kaAqZGjMIgNrtBU0Ogh0xyxX9wcvbvgPzsTk9z4Lrj8UpZ1CYJXUB-o8kitgo8xmEbugt2qsJfA5GFXedxV5l3lz67yUMJjKWbYrU34U__T-gZwx3o5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821746183</pqid></control><display><type>article</type><title>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion &amp; Bonding</title><source>SpringerNature Journals</source><creator>Bergh, Tina ; Fyhn, Hursanay ; Sandnes, Lise ; Blindheim, Jørgen ; Grong, Øystein ; Holmestad, Randi ; Berto, Filippo ; Vullum, Per Erik</creator><creatorcontrib>Bergh, Tina ; Fyhn, Hursanay ; Sandnes, Lise ; Blindheim, Jørgen ; Grong, Øystein ; Holmestad, Randi ; Berto, Filippo ; Vullum, Per Erik</creatorcontrib><description>Hybrid metal extrusion &amp; bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-023-07047-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Aluminum base alloys ; Bonding ; Butt joints ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Continuous extrusion ; Copper ; Dissimilar material joining ; Electron diffraction ; Grooves ; Intermetallic phases ; Joining ; Machining ; Materials Science ; Metallic Materials ; Nanotechnology ; Original Research Article ; Plastic deformation ; Pressure welding ; Steel ; Structural Materials ; Surfaces and Interfaces ; Tensile properties ; Tensile tests ; Thin Films ; Titanium</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-07, Vol.54 (7), p.2689-2702</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</citedby><cites>FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-023-07047-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-023-07047-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bergh, Tina</creatorcontrib><creatorcontrib>Fyhn, Hursanay</creatorcontrib><creatorcontrib>Sandnes, Lise</creatorcontrib><creatorcontrib>Blindheim, Jørgen</creatorcontrib><creatorcontrib>Grong, Øystein</creatorcontrib><creatorcontrib>Holmestad, Randi</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><title>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion &amp; Bonding</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Hybrid metal extrusion &amp; bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Bonding</subject><subject>Butt joints</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Continuous extrusion</subject><subject>Copper</subject><subject>Dissimilar material joining</subject><subject>Electron diffraction</subject><subject>Grooves</subject><subject>Intermetallic phases</subject><subject>Joining</subject><subject>Machining</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Plastic deformation</subject><subject>Pressure welding</subject><subject>Steel</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Thin Films</subject><subject>Titanium</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEURQdRsFb_gKuA4KrRvHnpZLqspX7R4sK6DmmTKSnTpCYZsP_e1AruXL27OPc8uEVxDewOGBP3EaCqgLISKROMC4onRQ-GHCmMODvNmQmkw6rE8-Iixg1jDEZY9Qo379pk6VYlE6xqyau3zro18Q1Rjozbbmtdt82h9XuSPJn43c6EAXlPxrSDzGiysEk5m6Hlnjzvl8FqMjcpu6ZfKXTRekduyYN3Onsvi7NGtdFc_d5-8fE4XUye6ezt6WUyntEVVphoDQbqGrVSy8pwrkumoRHAmRjhcliqkVmh1kaAqZGjMIgNrtBU0Ogh0xyxX9wcvbvgPzsTk9z4Lrj8UpZ1CYJXUB-o8kitgo8xmEbugt2qsJfA5GFXedxV5l3lz67yUMJjKWbYrU34U__T-gZwx3o5</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bergh, Tina</creator><creator>Fyhn, Hursanay</creator><creator>Sandnes, Lise</creator><creator>Blindheim, Jørgen</creator><creator>Grong, Øystein</creator><creator>Holmestad, Randi</creator><creator>Berto, Filippo</creator><creator>Vullum, Per Erik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230701</creationdate><title>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion &amp; Bonding</title><author>Bergh, Tina ; Fyhn, Hursanay ; Sandnes, Lise ; Blindheim, Jørgen ; Grong, Øystein ; Holmestad, Randi ; Berto, Filippo ; Vullum, Per Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-81e1883daab6e44d20d1f7140793b52a9ec3dde71e83437e33f3c3e61fd50d433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Bonding</topic><topic>Butt joints</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Continuous extrusion</topic><topic>Copper</topic><topic>Dissimilar material joining</topic><topic>Electron diffraction</topic><topic>Grooves</topic><topic>Intermetallic phases</topic><topic>Joining</topic><topic>Machining</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Plastic deformation</topic><topic>Pressure welding</topic><topic>Steel</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Thin Films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergh, Tina</creatorcontrib><creatorcontrib>Fyhn, Hursanay</creatorcontrib><creatorcontrib>Sandnes, Lise</creatorcontrib><creatorcontrib>Blindheim, Jørgen</creatorcontrib><creatorcontrib>Grong, Øystein</creatorcontrib><creatorcontrib>Holmestad, Randi</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Vullum, Per Erik</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergh, Tina</au><au>Fyhn, Hursanay</au><au>Sandnes, Lise</au><au>Blindheim, Jørgen</au><au>Grong, Øystein</au><au>Holmestad, Randi</au><au>Berto, Filippo</au><au>Vullum, Per Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion &amp; Bonding</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>54</volume><issue>7</issue><spage>2689</spage><epage>2702</epage><pages>2689-2702</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Hybrid metal extrusion &amp; bonding (HYB) is a solid-state welding method where an aluminum (Al) filler wire is continuously extruded into the weld groove between the metal parts to be joined by the use of a rotating steel tool that provides friction and plastic deformation. Although the HYB method was originally invented for Al joining, the process has shown great potential also for multi-material joining. This potential is explored through characterization of a unique Al–copper–steel–titanium (Al–Cu–steel–Ti) butt joint made in one pass. Each of the three dissimilar metal interface regions are characterized in terms of microstructure and tensile properties. Scanning and transmission electron microscopy reveals that bonding is achieved through a combination of nanoscale intermetallic phase formation and microscale mechanical interlocking. Electron diffraction is used to identify the main intermetallic phases present in the interfacial layers. Machining of miniature specimens enables tensile testing of each interface region. Overall, the presented characterization demonstrates the great potential for multi-material joining by HYB and provides fundamental insight into solid-state welding involving bonding of Al to Ti, steel, and Cu.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-023-07047-3</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2023-07, Vol.54 (7), p.2689-2702
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2821746183
source SpringerNature Journals
subjects Aluminum
Aluminum base alloys
Bonding
Butt joints
Characterization and Evaluation of Materials
Chemistry and Materials Science
Continuous extrusion
Copper
Dissimilar material joining
Electron diffraction
Grooves
Intermetallic phases
Joining
Machining
Materials Science
Metallic Materials
Nanotechnology
Original Research Article
Plastic deformation
Pressure welding
Steel
Structural Materials
Surfaces and Interfaces
Tensile properties
Tensile tests
Thin Films
Titanium
title Multi-material Joining of an Aluminum Alloy to Copper, Steel, and Titanium by Hybrid Metal Extrusion & Bonding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-material%20Joining%20of%20an%20Aluminum%20Alloy%20to%20Copper,%20Steel,%20and%20Titanium%20by%20Hybrid%20Metal%20Extrusion%20&%20Bonding&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Bergh,%20Tina&rft.date=2023-07-01&rft.volume=54&rft.issue=7&rft.spage=2689&rft.epage=2702&rft.pages=2689-2702&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-023-07047-3&rft_dat=%3Cproquest_cross%3E2821746183%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821746183&rft_id=info:pmid/&rfr_iscdi=true